Improving Water Repellence and Friability of Tannin-Furanic Foams by Oil-Grafted Flavonoid Tannins
Tannin-furanic biobased foams, based on the co-reaction of bark-derived condensed tannins and thermoset furanic polymers, have low thermal conductivity, are self-extinguishing, and have high fire resistance, which allows their development for several industrial uses. One of their main drawbacks, how...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
North Carolina State University
2016-08-01
|
Series: | BioResources |
Subjects: | |
Online Access: | http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_3_7754_Rangel_Improving_Water_Repellence_Friability_Tannins |
Summary: | Tannin-furanic biobased foams, based on the co-reaction of bark-derived condensed tannins and thermoset furanic polymers, have low thermal conductivity, are self-extinguishing, and have high fire resistance, which allows their development for several industrial uses. One of their main drawbacks, however, is the absorption of water within the foam itself. Another problem is the rather friable surface, which is a definite drawback for some potential applications. In this work, these two problems are minimized or eliminated by introducing a component of oil-grafted tannin in the foam formulation. The incorporation of fatty chains markedly decreased foam friability and increased water repellency in the body of the foams. These properties and the compounds formed by fatty acids grafting onto the tannin flavonoids were extensively tested. |
---|---|
ISSN: | 1930-2126 1930-2126 |