Improved Power Series Solution of Transversely Loaded Hollow Annular Membranes: Simultaneous Modification of Out-of-Plane Equilibrium Equation and Radial Geometric Equation

The ability to accurately predict the shape of a transversely loaded hollow annular membrane is essential to the design of bending-free hollow annular shells of revolution, which requires a further improvement in the hollow annular membrane solution to meet the needs of this accurate prediction. In...

Full description

Bibliographic Details
Main Authors: Xiao-Ting He, Fei-Yan Li, Jun-Yi Sun
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/18/3836
Description
Summary:The ability to accurately predict the shape of a transversely loaded hollow annular membrane is essential to the design of bending-free hollow annular shells of revolution, which requires a further improvement in the hollow annular membrane solution to meet the needs of this accurate prediction. In this paper, the large deflection problem of a transversely loaded hollow annular membrane is reformulated by simultaneously modifying the out-of-plane equilibrium equation and radial geometric equation, and a newer and more refined power series solution is derived. The reason why the classical radial geometry equation induces errors is revealed. The convergence and asymptotic behavior of the power series solution obtained is analyzed numerically. The newly derived solution is compared with the two previously derived solutions graphically, showing that the newly derived solution performs basically as well as expected. In addition, the anticipated use of the hollow and not-hollow annular membrane solutions for the design application of bending-free annular shells of revolution is discussed.
ISSN:2227-7390