Interpreting drug synergy in breast cancer with deep learning using target-protein inhibition profiles
Abstract Background Breast cancer is the most common malignancy among women worldwide. Despite advances in treating breast cancer over the past decades, drug resistance and adverse effects remain challenging. Recent therapeutic progress has shifted toward using drug combinations for better treatment...
Hlavní autoři: | Thanyawee Srithanyarat, Kittisak Taoma, Thana Sutthibutpong, Marasri Ruengjitchatchawalya, Monrudee Liangruksa, Teeraphan Laomettachit |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
BMC
2024-02-01
|
Edice: | BioData Mining |
Témata: | |
On-line přístup: | https://doi.org/10.1186/s13040-024-00359-z |
Podobné jednotky
-
Boolean modeling of breast cancer signaling pathways uncovers mechanisms of drug synergy.
Autor: Kittisak Taoma, a další
Vydáno: (2024-01-01) -
PhotoModPlus: A web server for photosynthetic protein prediction from genome neighborhood features.
Autor: Apiwat Sangphukieo, a další
Vydáno: (2021-01-01) -
Small molecule inhibitors targeting the cancers
Autor: Gui‐Hong Liu, a další
Vydáno: (2022-12-01) -
Network analysis retrieving bioactive compounds from Spirulina (Arthrospira platensis) and their targets related to systemic lupus erythematosus.
Autor: Amnart Chaiprasert, a další
Vydáno: (2024-01-01) -
Combining Deep Learning and Structural Modeling to Identify Potential Acetylcholinesterase Inhibitors from Hericium erinaceus
Autor: Thana Sutthibutpong, a další
Vydáno: (2024-03-01)