The Validation of FORMOSAT-3/COSMIC Measurements in the Middle Latitude Region of China with Ionosonde Observations during 2015–2018

We used ground-based ionosonde observations at Ganzi (31.2° N, 100.4° E) to validate the COSMIC measurement in the middle latitude region of China during low solar activity. First, eligible data pairs from two kinds of techniques were selected for the validation. Then, we investigated the consistenc...

Full description

Bibliographic Details
Main Authors: Liangchen Hu, Fanfan Su, Fuying Zhu, Xinxing Li
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/8/10/528
Description
Summary:We used ground-based ionosonde observations at Ganzi (31.2° N, 100.4° E) to validate the COSMIC measurement in the middle latitude region of China during low solar activity. First, eligible data pairs from two kinds of techniques were selected for the validation. Then, we investigated the consistency of the ionospheric parameters’ F layer peak density (NmF2) from selected data pairs at different local times in different seasons, and we also investigated the F layer peak height (hmF2). The correlation of the parameters (including NmF2 and hmF2) were good in general. The correlation coefficients of the NmF2 and hmF2 from all selected data pairs were 0.94 and 0.77, respectively. The correlation coefficients were higher in the daytime than those at night for both the NmF2 and hmF2. The correlation coefficients in different seasons were close to each other for both the NmF2 and hmF2. The NmF2 from the COSMIC tends to be overestimated during the whole day except in the morning; the hmF2 from the COSMIC tends to be overestimated in the morning and underestimated in the afternoon.
ISSN:2218-1997