Arctic stratospheric dehydration – Part 2: Microphysical modeling
Large areas of synoptic-scale ice PSCs (polar stratospheric clouds) distinguished the Arctic winter 2009/2010 from other years and revealed unprecedented evidence of water redistribution in the stratosphere. A unique snapshot of water vapor repartitioning into ice particles was obtained under extrem...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2014-04-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/14/3231/2014/acp-14-3231-2014.pdf |
Summary: | Large areas of synoptic-scale ice PSCs (polar stratospheric clouds)
distinguished the Arctic winter 2009/2010 from other years and revealed
unprecedented evidence of water redistribution in the stratosphere. A unique
snapshot of water vapor repartitioning into ice particles was obtained under
extremely cold Arctic conditions with temperatures around 183 K.
Balloon-borne, aircraft and satellite-based measurements suggest that
synoptic-scale ice PSCs and concurrent reductions and enhancements in water
vapor are tightly linked with the observed de- and rehydration signatures,
respectively. In a companion paper (Part 1), water vapor and aerosol
backscatter measurements from the RECONCILE (Reconciliation of essential
process parameters for an enhanced predictability of Arctic stratospheric
ozone loss and its climate interactions) and LAPBIAT-II (Lapland
Atmosphere–Biosphere Facility) field campaigns have been analyzed in detail.
This paper uses a column version of the Zurich Optical and Microphysical box
Model (ZOMM) including newly developed NAT (nitric acid trihydrate) and ice
nucleation parameterizations. Particle sedimentation is calculated in order
to simulate the vertical redistribution of chemical species such as water and
nitric acid. Despite limitations given by wind shear and uncertainties in the
initial water vapor profile, the column modeling unequivocally shows that (1)
accounting for small-scale temperature fluctuations along the trajectories is
essential in order to reach agreement between simulated optical cloud properties and
observations, and (2) the use of recently developed heterogeneous ice
nucleation parameterizations allows the reproduction of the observed signatures of
de- and rehydration. Conversely, the vertical redistribution of
water measured cannot be explained in terms of homogeneous nucleation of ice clouds,
whose particle radii remain too small to cause significant dehydration. |
---|---|
ISSN: | 1680-7316 1680-7324 |