Boundedness in a two-dimensional chemotaxis system with signal-dependent motility and logistic source

Abstract In this paper, we study the following chemotaxis system with a signal-dependent motility and logistic source: { u t = Δ ( γ ( v ) u ) + μ u ( 1 − u α ) , x ∈ Ω , t > 0 , 0 = Δ v − v + u r , x ∈ Ω , t > 0 , u ( x , 0 ) = u 0 ( x ) , x ∈ Ω $$ \textstyle\begin{cases} u_{t}=\Delta {\bigl(...

Full description

Bibliographic Details
Main Authors: Yanmei Hu, Wanjuan Du
Format: Article
Language:English
Published: SpringerOpen 2023-08-01
Series:Boundary Value Problems
Subjects:
Online Access:https://doi.org/10.1186/s13661-023-01766-7
_version_ 1797451934730289152
author Yanmei Hu
Wanjuan Du
author_facet Yanmei Hu
Wanjuan Du
author_sort Yanmei Hu
collection DOAJ
description Abstract In this paper, we study the following chemotaxis system with a signal-dependent motility and logistic source: { u t = Δ ( γ ( v ) u ) + μ u ( 1 − u α ) , x ∈ Ω , t > 0 , 0 = Δ v − v + u r , x ∈ Ω , t > 0 , u ( x , 0 ) = u 0 ( x ) , x ∈ Ω $$ \textstyle\begin{cases} u_{t}=\Delta {\bigl(\gamma (v)u\bigr)}+\mu u\bigl(1-u^{\alpha}\bigr), &x \in \Omega , t > 0, \\ 0=\Delta v-\ v+u^{r} , &x\in \Omega , t > 0, \\ u(x, 0) = u_{0}(x), &x\in \Omega \end{cases} $$ under homogeneous Neumann boundary conditions in a smooth bounded domain Ω ⊂ R 2 $\Omega \subset \mathbb{R}^{2}$ , where the motility function γ ( v ) $\gamma (v)$ satisfies γ ( v ) ∈ C 3 ( [ 0 , ∞ ) ) $\gamma (v)\in C^{3}([0,\infty ))$ with γ ( v ) > 0 $\gamma (v)>0$ , and | γ ′ ( v ) | 2 γ ( v ) $\frac{|\gamma '(v)|^{2}}{\gamma (v)}$ is bounded for all v > 0 $v > 0$ . The purpose of this paper is to prove that the model possesses globally bounded solutions. In addition, we show that all solutions ( u , v ) $(u, v)$ of the model will exponentially converge to the unique constant steady state ( 1 , 1 ) $(1, 1)$ as t → + ∞ $t\rightarrow +\infty $ when μ ≥ K 4 1 + r $\mu \geq \frac{K}{4^{1+r}}$ with K = max 0 < v ≤ ∞ | γ ′ ( v ) | 2 γ ( v ) $K=\max_{0< v\leq \infty} \frac{|\gamma '(v)|^{2}}{\gamma (v)}$ .
first_indexed 2024-03-09T15:01:39Z
format Article
id doaj.art-095d990147cc4613ae60f943f2f4a7c0
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-03-09T15:01:39Z
publishDate 2023-08-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-095d990147cc4613ae60f943f2f4a7c02023-11-26T13:51:02ZengSpringerOpenBoundary Value Problems1687-27702023-08-012023112210.1186/s13661-023-01766-7Boundedness in a two-dimensional chemotaxis system with signal-dependent motility and logistic sourceYanmei Hu0Wanjuan Du1College of Mathematic and Information, China West Normal UniversityCollege of Mathematics Education, China West Normal UniversityAbstract In this paper, we study the following chemotaxis system with a signal-dependent motility and logistic source: { u t = Δ ( γ ( v ) u ) + μ u ( 1 − u α ) , x ∈ Ω , t > 0 , 0 = Δ v − v + u r , x ∈ Ω , t > 0 , u ( x , 0 ) = u 0 ( x ) , x ∈ Ω $$ \textstyle\begin{cases} u_{t}=\Delta {\bigl(\gamma (v)u\bigr)}+\mu u\bigl(1-u^{\alpha}\bigr), &x \in \Omega , t > 0, \\ 0=\Delta v-\ v+u^{r} , &x\in \Omega , t > 0, \\ u(x, 0) = u_{0}(x), &x\in \Omega \end{cases} $$ under homogeneous Neumann boundary conditions in a smooth bounded domain Ω ⊂ R 2 $\Omega \subset \mathbb{R}^{2}$ , where the motility function γ ( v ) $\gamma (v)$ satisfies γ ( v ) ∈ C 3 ( [ 0 , ∞ ) ) $\gamma (v)\in C^{3}([0,\infty ))$ with γ ( v ) > 0 $\gamma (v)>0$ , and | γ ′ ( v ) | 2 γ ( v ) $\frac{|\gamma '(v)|^{2}}{\gamma (v)}$ is bounded for all v > 0 $v > 0$ . The purpose of this paper is to prove that the model possesses globally bounded solutions. In addition, we show that all solutions ( u , v ) $(u, v)$ of the model will exponentially converge to the unique constant steady state ( 1 , 1 ) $(1, 1)$ as t → + ∞ $t\rightarrow +\infty $ when μ ≥ K 4 1 + r $\mu \geq \frac{K}{4^{1+r}}$ with K = max 0 < v ≤ ∞ | γ ′ ( v ) | 2 γ ( v ) $K=\max_{0< v\leq \infty} \frac{|\gamma '(v)|^{2}}{\gamma (v)}$ .https://doi.org/10.1186/s13661-023-01766-7Global boundednessLogistic sourceChemotaxisSignal-dependent motilityExponential decay
spellingShingle Yanmei Hu
Wanjuan Du
Boundedness in a two-dimensional chemotaxis system with signal-dependent motility and logistic source
Boundary Value Problems
Global boundedness
Logistic source
Chemotaxis
Signal-dependent motility
Exponential decay
title Boundedness in a two-dimensional chemotaxis system with signal-dependent motility and logistic source
title_full Boundedness in a two-dimensional chemotaxis system with signal-dependent motility and logistic source
title_fullStr Boundedness in a two-dimensional chemotaxis system with signal-dependent motility and logistic source
title_full_unstemmed Boundedness in a two-dimensional chemotaxis system with signal-dependent motility and logistic source
title_short Boundedness in a two-dimensional chemotaxis system with signal-dependent motility and logistic source
title_sort boundedness in a two dimensional chemotaxis system with signal dependent motility and logistic source
topic Global boundedness
Logistic source
Chemotaxis
Signal-dependent motility
Exponential decay
url https://doi.org/10.1186/s13661-023-01766-7
work_keys_str_mv AT yanmeihu boundednessinatwodimensionalchemotaxissystemwithsignaldependentmotilityandlogisticsource
AT wanjuandu boundednessinatwodimensionalchemotaxissystemwithsignaldependentmotilityandlogisticsource