An Investigation of Efficiency Issues in a Low-Pressure Steam Turbine Using Neural Modelling

This study utilizes neural networks to detect and locate thermal anomalies in low-pressure steam turbines, some of which experienced a drop in efficiency. Standard approaches relying on expert knowledge or statistical methods struggled to identify the anomalous steam line due to difficulty in captur...

Full description

Bibliographic Details
Main Authors: Marek Bělohoubek, Karel Liška, Zdeněk Kubín, Petr Polcar, Luboš Smolík, Pavel Polach
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/24/7/2056
Description
Summary:This study utilizes neural networks to detect and locate thermal anomalies in low-pressure steam turbines, some of which experienced a drop in efficiency. Standard approaches relying on expert knowledge or statistical methods struggled to identify the anomalous steam line due to difficulty in capturing nonlinear and weak relations in the presence of linear and strong ones. In this research, some inputs that linearly relate to outputs have been intentionally neglected. The remaining inputs have been used to train shallow feedforward or long short-term memory neural networks using measured data. The resulting models have been analyzed by Shapley additive explanations, which can determine the impact of individual inputs or model features on outputs. This analysis identified unexpected relations between lines that should not be connected. Subsequently, during periodic plant shutdown, a leak was discovered in the indicated line.
ISSN:1424-8220