Exploiting Publication Contents and Collaboration Networks for Collaborator Recommendation.

Thanks to the proliferation of online social networks, it has become conventional for researchers to communicate and collaborate with each other. Meanwhile, one critical challenge arises, that is, how to find the most relevant and potential collaborators for each researcher? In this work, we propose...

Full description

Bibliographic Details
Main Authors: Xiangjie Kong, Huizhen Jiang, Zhuo Yang, Zhenzhen Xu, Feng Xia, Amr Tolba
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4743965?pdf=render
Description
Summary:Thanks to the proliferation of online social networks, it has become conventional for researchers to communicate and collaborate with each other. Meanwhile, one critical challenge arises, that is, how to find the most relevant and potential collaborators for each researcher? In this work, we propose a novel collaborator recommendation model called CCRec, which combines the information on researchers' publications and collaboration network to generate better recommendation. In order to effectively identify the most potential collaborators for researchers, we adopt a topic clustering model to identify the academic domains, as well as a random walk model to compute researchers' feature vectors. Using DBLP datasets, we conduct benchmarking experiments to examine the performance of CCRec. The experimental results show that CCRec outperforms other state-of-the-art methods in terms of precision, recall and F1 score.
ISSN:1932-6203