Steklov problems for the p−Laplace operator involving Lq-norm

In this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form {Δpu=|u|p-2uin Ω,|∇u|p-2∂u∂v=λ‖u‖q,∂Ωp-q|u|q-2uon ∂Ω,\left\{ {\matrix{{{\Delta _p}u = {{\left| u \right|}^{p - 2}}u} \hfill & {{\rm{in}}\,\Omega ,} \hfill \cr {{{\left| {\nabla u} \right...

Full description

Bibliographic Details
Main Authors: Alaoui My Driss Morchid, Khalil Abdelouahd El, Touzani Abdelfattah
Format: Article
Language:English
Published: Sciendo 2022-05-01
Series:Moroccan Journal of Pure and Applied Analysis
Subjects:
Online Access:https://doi.org/10.2478/mjpaa-2022-0016
_version_ 1811254959461629952
author Alaoui My Driss Morchid
Khalil Abdelouahd El
Touzani Abdelfattah
author_facet Alaoui My Driss Morchid
Khalil Abdelouahd El
Touzani Abdelfattah
author_sort Alaoui My Driss Morchid
collection DOAJ
description In this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form {Δpu=|u|p-2uin Ω,|∇u|p-2∂u∂v=λ‖u‖q,∂Ωp-q|u|q-2uon ∂Ω,\left\{ {\matrix{{{\Delta _p}u = {{\left| u \right|}^{p - 2}}u} \hfill & {{\rm{in}}\,\Omega ,} \hfill \cr {{{\left| {\nabla u} \right|}^{p - 2}}{{\partial u} \over {\partial v}} = \lambda \left\| u \right\|_{q,\partial \Omega }^{p - q}{{\left| u \right|}^{q - 2}}u} \hfill & {{\rm{on}}\,\partial \Omega ,} \hfill \cr } } \right. where Ω is a smooth bounded domain in ℝN(N ≥ 1), λ is a real number which plays the role of eigenvalue and the unknowns u ∈ W1,p(Ω). Using the Ljusterneck-Shnirelmann theory on C1 manifold and Sobolev trace embedding we prove the existence of an increasing sequence positive of eigenvalues (λk)k≥1, for the above problem. We then establish that the first eigenvalue is simple and isolated.
first_indexed 2024-04-12T17:16:30Z
format Article
id doaj.art-0973dec4433941d0a286977955865bf7
institution Directory Open Access Journal
issn 2351-8227
language English
last_indexed 2024-04-12T17:16:30Z
publishDate 2022-05-01
publisher Sciendo
record_format Article
series Moroccan Journal of Pure and Applied Analysis
spelling doaj.art-0973dec4433941d0a286977955865bf72022-12-22T03:23:38ZengSciendoMoroccan Journal of Pure and Applied Analysis2351-82272022-05-018222824310.2478/mjpaa-2022-0016Steklov problems for the p−Laplace operator involving Lq-normAlaoui My Driss Morchid0Khalil Abdelouahd El1Touzani Abdelfattah2Laboratory MAIS (AMNEA Group), Department of Mathematics, Faculty of Sciences and Technologies Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000 Errachidia, MoroccoDepartment of Mathematics and Statistics, College of Science Al Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, 11623Riyadh, KSALaboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz University Sidi Mohamed Ben Abdellah, P.O. Box 1796 Atlas Fez, MoroccoIn this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form {Δpu=|u|p-2uin Ω,|∇u|p-2∂u∂v=λ‖u‖q,∂Ωp-q|u|q-2uon ∂Ω,\left\{ {\matrix{{{\Delta _p}u = {{\left| u \right|}^{p - 2}}u} \hfill & {{\rm{in}}\,\Omega ,} \hfill \cr {{{\left| {\nabla u} \right|}^{p - 2}}{{\partial u} \over {\partial v}} = \lambda \left\| u \right\|_{q,\partial \Omega }^{p - q}{{\left| u \right|}^{q - 2}}u} \hfill & {{\rm{on}}\,\partial \Omega ,} \hfill \cr } } \right. where Ω is a smooth bounded domain in ℝN(N ≥ 1), λ is a real number which plays the role of eigenvalue and the unknowns u ∈ W1,p(Ω). Using the Ljusterneck-Shnirelmann theory on C1 manifold and Sobolev trace embedding we prove the existence of an increasing sequence positive of eigenvalues (λk)k≥1, for the above problem. We then establish that the first eigenvalue is simple and isolated.https://doi.org/10.2478/mjpaa-2022-0016p-laplace operatornonlinear eigenvalue problemboundary value problemssobolev trace embeddingc1 manifoldljusternick-schnirelmann theory35j6658e05246e3558e05
spellingShingle Alaoui My Driss Morchid
Khalil Abdelouahd El
Touzani Abdelfattah
Steklov problems for the p−Laplace operator involving Lq-norm
Moroccan Journal of Pure and Applied Analysis
p-laplace operator
nonlinear eigenvalue problem
boundary value problems
sobolev trace embedding
c1 manifold
ljusternick-schnirelmann theory
35j66
58e052
46e35
58e05
title Steklov problems for the p−Laplace operator involving Lq-norm
title_full Steklov problems for the p−Laplace operator involving Lq-norm
title_fullStr Steklov problems for the p−Laplace operator involving Lq-norm
title_full_unstemmed Steklov problems for the p−Laplace operator involving Lq-norm
title_short Steklov problems for the p−Laplace operator involving Lq-norm
title_sort steklov problems for the p laplace operator involving lq norm
topic p-laplace operator
nonlinear eigenvalue problem
boundary value problems
sobolev trace embedding
c1 manifold
ljusternick-schnirelmann theory
35j66
58e052
46e35
58e05
url https://doi.org/10.2478/mjpaa-2022-0016
work_keys_str_mv AT alaouimydrissmorchid steklovproblemsfortheplaplaceoperatorinvolvinglqnorm
AT khalilabdelouahdel steklovproblemsfortheplaplaceoperatorinvolvinglqnorm
AT touzaniabdelfattah steklovproblemsfortheplaplaceoperatorinvolvinglqnorm