Optical cycling of AlF molecules

Aluminium monofluoride (AlF) is a promising candidate for laser cooling and trapping at high densities. We show efficient production of AlF in a bright, pulsed cryogenic buffer gas beam, and demonstrate rapid optical cycling on the Q rotational lines of the A ^1 Π ↔ X ^1 Σ ^+ transition. We measure...

Full description

Bibliographic Details
Main Authors: S Hofsäss, M Doppelbauer, S C Wright, S Kray, B G Sartakov, J Pérez-Ríos, G Meijer, S Truppe
Format: Article
Language:English
Published: IOP Publishing 2021-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/ac06e5
_version_ 1797750119759609856
author S Hofsäss
M Doppelbauer
S C Wright
S Kray
B G Sartakov
J Pérez-Ríos
G Meijer
S Truppe
author_facet S Hofsäss
M Doppelbauer
S C Wright
S Kray
B G Sartakov
J Pérez-Ríos
G Meijer
S Truppe
author_sort S Hofsäss
collection DOAJ
description Aluminium monofluoride (AlF) is a promising candidate for laser cooling and trapping at high densities. We show efficient production of AlF in a bright, pulsed cryogenic buffer gas beam, and demonstrate rapid optical cycling on the Q rotational lines of the A ^1 Π ↔ X ^1 Σ ^+ transition. We measure the brightness of the molecular beam to be >10 ^12 molecules per steradian per pulse in a single rotational state and present a new method to determine its velocity distribution in a single shot. The photon scattering rate of the optical cycling scheme is measured using three different methods, and is compared to theoretical predictions of the optical Bloch equations and a simplified rate equation model. Despite the large number of Zeeman sublevels (up to 216 for the Q(4) transition) involved, a high scattering rate of at least 17(2) × 10 ^6  s ^−1 can be sustained using a single, fixed-frequency laser without the need to modulate the polarisation. We deflect the molecu-lar beam using the radiation pressure force and measure an acceleration of 8.7(1.5) × 10 ^5 m s ^−2 . Losses from the optical cycle due to vibrational branching to X ^1 Σ ^+ , v ″ = 1 are addressed efficiently with a single repump laser. Further, we investigate two other loss channels, parity mixing by stray electric fields and photo-ionisation. The upper bounds for these effects are sufficiently low to allow loading into a magneto‐optical trap.
first_indexed 2024-03-12T16:28:03Z
format Article
id doaj.art-0977be5e9c814309b3b96ec99e603487
institution Directory Open Access Journal
issn 1367-2630
language English
last_indexed 2024-03-12T16:28:03Z
publishDate 2021-01-01
publisher IOP Publishing
record_format Article
series New Journal of Physics
spelling doaj.art-0977be5e9c814309b3b96ec99e6034872023-08-08T15:36:24ZengIOP PublishingNew Journal of Physics1367-26302021-01-0123707500110.1088/1367-2630/ac06e5Optical cycling of AlF moleculesS Hofsäss0https://orcid.org/0000-0001-6805-7044M Doppelbauer1https://orcid.org/0000-0002-6288-0256S C Wright2https://orcid.org/0000-0003-2431-5624S Kray3https://orcid.org/0000-0002-8599-3800B G Sartakov4https://orcid.org/0000-0001-9498-7587J Pérez-Ríos5https://orcid.org/0000-0001-9491-9859G Meijer6https://orcid.org/0000-0001-9669-8340S Truppe7https://orcid.org/0000-0002-0121-6538Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, GermanyFritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, GermanyFritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, GermanyFritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, GermanyProkhorov General Physics Institute , Russian Academy of Sciences, Vavilovstreet 38, 119991 Moscow, RussiaFritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, GermanyFritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, GermanyFritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, 14195 Berlin, GermanyAluminium monofluoride (AlF) is a promising candidate for laser cooling and trapping at high densities. We show efficient production of AlF in a bright, pulsed cryogenic buffer gas beam, and demonstrate rapid optical cycling on the Q rotational lines of the A ^1 Π ↔ X ^1 Σ ^+ transition. We measure the brightness of the molecular beam to be >10 ^12 molecules per steradian per pulse in a single rotational state and present a new method to determine its velocity distribution in a single shot. The photon scattering rate of the optical cycling scheme is measured using three different methods, and is compared to theoretical predictions of the optical Bloch equations and a simplified rate equation model. Despite the large number of Zeeman sublevels (up to 216 for the Q(4) transition) involved, a high scattering rate of at least 17(2) × 10 ^6  s ^−1 can be sustained using a single, fixed-frequency laser without the need to modulate the polarisation. We deflect the molecu-lar beam using the radiation pressure force and measure an acceleration of 8.7(1.5) × 10 ^5 m s ^−2 . Losses from the optical cycle due to vibrational branching to X ^1 Σ ^+ , v ″ = 1 are addressed efficiently with a single repump laser. Further, we investigate two other loss channels, parity mixing by stray electric fields and photo-ionisation. The upper bounds for these effects are sufficiently low to allow loading into a magneto‐optical trap.https://doi.org/10.1088/1367-2630/ac06e5laser coolingcold moleculesbuffer gas cooling
spellingShingle S Hofsäss
M Doppelbauer
S C Wright
S Kray
B G Sartakov
J Pérez-Ríos
G Meijer
S Truppe
Optical cycling of AlF molecules
New Journal of Physics
laser cooling
cold molecules
buffer gas cooling
title Optical cycling of AlF molecules
title_full Optical cycling of AlF molecules
title_fullStr Optical cycling of AlF molecules
title_full_unstemmed Optical cycling of AlF molecules
title_short Optical cycling of AlF molecules
title_sort optical cycling of alf molecules
topic laser cooling
cold molecules
buffer gas cooling
url https://doi.org/10.1088/1367-2630/ac06e5
work_keys_str_mv AT shofsass opticalcyclingofalfmolecules
AT mdoppelbauer opticalcyclingofalfmolecules
AT scwright opticalcyclingofalfmolecules
AT skray opticalcyclingofalfmolecules
AT bgsartakov opticalcyclingofalfmolecules
AT jperezrios opticalcyclingofalfmolecules
AT gmeijer opticalcyclingofalfmolecules
AT struppe opticalcyclingofalfmolecules