Existence of homoclinic orbit in generalized Liénard type system
The object of this paper is to study the existence and nonexistence of an important orbit in a generalized Liénard type system. This trajectory is doubly asymptotic to an equilibrium solution, i.e., an orbit which lies in the intersection of the stable and unstable manifolds of a critical point. Su...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2021-04-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8690 |
Summary: | The object of this paper is to study the existence and nonexistence of an important orbit in a generalized Liénard type system. This trajectory is doubly asymptotic to an equilibrium solution, i.e., an orbit which lies in the intersection of the stable and unstable manifolds of a critical point. Such an orbit is called a homoclinic orbit. |
---|---|
ISSN: | 1417-3875 |