Existence of homoclinic orbit in generalized Liénard type system
The object of this paper is to study the existence and nonexistence of an important orbit in a generalized Liénard type system. This trajectory is doubly asymptotic to an equilibrium solution, i.e., an orbit which lies in the intersection of the stable and unstable manifolds of a critical point. Su...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2021-04-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8690 |
_version_ | 1797830416451764224 |
---|---|
author | Tohid Kasbi Vahid Roomi Aliasghar Jodayree Akbarfam |
author_facet | Tohid Kasbi Vahid Roomi Aliasghar Jodayree Akbarfam |
author_sort | Tohid Kasbi |
collection | DOAJ |
description | The object of this paper is to study the existence and nonexistence of an important orbit in a generalized Liénard type system. This trajectory is doubly asymptotic to an equilibrium solution, i.e., an orbit which lies in the intersection of the stable and unstable manifolds of a critical point. Such an orbit is called a homoclinic orbit. |
first_indexed | 2024-04-09T13:36:52Z |
format | Article |
id | doaj.art-0983b830d8cb4c269835e9b366b95ea3 |
institution | Directory Open Access Journal |
issn | 1417-3875 |
language | English |
last_indexed | 2024-04-09T13:36:52Z |
publishDate | 2021-04-01 |
publisher | University of Szeged |
record_format | Article |
series | Electronic Journal of Qualitative Theory of Differential Equations |
spelling | doaj.art-0983b830d8cb4c269835e9b366b95ea32023-05-09T07:53:11ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752021-04-0120213411310.14232/ejqtde.2021.1.348690Existence of homoclinic orbit in generalized Liénard type systemTohid Kasbi0Vahid Roomi1Aliasghar Jodayree Akbarfam2University of Tabriz, Tabriz, IranAzarbaijan Shahid Madani University, Tabriz, IranFaculty of Mathematical Sciences, University of Tabriz, Tabriz, IranThe object of this paper is to study the existence and nonexistence of an important orbit in a generalized Liénard type system. This trajectory is doubly asymptotic to an equilibrium solution, i.e., an orbit which lies in the intersection of the stable and unstable manifolds of a critical point. Such an orbit is called a homoclinic orbit.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8690liénard systemhomoclinic orbitplanar systemdynamical systems |
spellingShingle | Tohid Kasbi Vahid Roomi Aliasghar Jodayree Akbarfam Existence of homoclinic orbit in generalized Liénard type system Electronic Journal of Qualitative Theory of Differential Equations liénard system homoclinic orbit planar system dynamical systems |
title | Existence of homoclinic orbit in generalized Liénard type system |
title_full | Existence of homoclinic orbit in generalized Liénard type system |
title_fullStr | Existence of homoclinic orbit in generalized Liénard type system |
title_full_unstemmed | Existence of homoclinic orbit in generalized Liénard type system |
title_short | Existence of homoclinic orbit in generalized Liénard type system |
title_sort | existence of homoclinic orbit in generalized lienard type system |
topic | liénard system homoclinic orbit planar system dynamical systems |
url | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8690 |
work_keys_str_mv | AT tohidkasbi existenceofhomoclinicorbitingeneralizedlienardtypesystem AT vahidroomi existenceofhomoclinicorbitingeneralizedlienardtypesystem AT aliasgharjodayreeakbarfam existenceofhomoclinicorbitingeneralizedlienardtypesystem |