Existence of homoclinic orbit in generalized Liénard type system

The object of this paper is to study the existence and nonexistence of an important orbit in a generalized Liénard type system. This trajectory is doubly asymptotic to an equilibrium solution, i.e., an orbit which lies in the intersection of the stable and unstable manifolds of a critical point. Su...

Full description

Bibliographic Details
Main Authors: Tohid Kasbi, Vahid Roomi, Aliasghar Jodayree Akbarfam
Format: Article
Language:English
Published: University of Szeged 2021-04-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8690
_version_ 1797830416451764224
author Tohid Kasbi
Vahid Roomi
Aliasghar Jodayree Akbarfam
author_facet Tohid Kasbi
Vahid Roomi
Aliasghar Jodayree Akbarfam
author_sort Tohid Kasbi
collection DOAJ
description The object of this paper is to study the existence and nonexistence of an important orbit in a generalized Liénard type system. This trajectory is doubly asymptotic to an equilibrium solution, i.e., an orbit which lies in the intersection of the stable and unstable manifolds of a critical point. Such an orbit is called a homoclinic orbit.
first_indexed 2024-04-09T13:36:52Z
format Article
id doaj.art-0983b830d8cb4c269835e9b366b95ea3
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:36:52Z
publishDate 2021-04-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-0983b830d8cb4c269835e9b366b95ea32023-05-09T07:53:11ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752021-04-0120213411310.14232/ejqtde.2021.1.348690Existence of homoclinic orbit in generalized Liénard type systemTohid Kasbi0Vahid Roomi1Aliasghar Jodayree Akbarfam2University of Tabriz, Tabriz, IranAzarbaijan Shahid Madani University, Tabriz, IranFaculty of Mathematical Sciences, University of Tabriz, Tabriz, IranThe object of this paper is to study the existence and nonexistence of an important orbit in a generalized Liénard type system. This trajectory is doubly asymptotic to an equilibrium solution, i.e., an orbit which lies in the intersection of the stable and unstable manifolds of a critical point. Such an orbit is called a homoclinic orbit.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8690liénard systemhomoclinic orbitplanar systemdynamical systems
spellingShingle Tohid Kasbi
Vahid Roomi
Aliasghar Jodayree Akbarfam
Existence of homoclinic orbit in generalized Liénard type system
Electronic Journal of Qualitative Theory of Differential Equations
liénard system
homoclinic orbit
planar system
dynamical systems
title Existence of homoclinic orbit in generalized Liénard type system
title_full Existence of homoclinic orbit in generalized Liénard type system
title_fullStr Existence of homoclinic orbit in generalized Liénard type system
title_full_unstemmed Existence of homoclinic orbit in generalized Liénard type system
title_short Existence of homoclinic orbit in generalized Liénard type system
title_sort existence of homoclinic orbit in generalized lienard type system
topic liénard system
homoclinic orbit
planar system
dynamical systems
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8690
work_keys_str_mv AT tohidkasbi existenceofhomoclinicorbitingeneralizedlienardtypesystem
AT vahidroomi existenceofhomoclinicorbitingeneralizedlienardtypesystem
AT aliasgharjodayreeakbarfam existenceofhomoclinicorbitingeneralizedlienardtypesystem