A Model for Predicting Polycystic Ovary Syndrome Using Serum AMH, Menstrual Cycle Length, Body Mass Index and Serum Androstenedione in Chinese Reproductive Aged Population: A Retrospective Cohort Study

BackgroundA clinical diagnosis of polycystic ovary syndrome (PCOS) can be tedious with many different required tests and examinations. Furthermore, women with PCOS have increased risks for several metabolic complications, which need long-term health management. Therefore, we attempted to establish a...

Full description

Bibliographic Details
Main Authors: Huiyu Xu, Guoshuang Feng, Kannan Alpadi, Yong Han, Rui Yang, Lixue Chen, Rong Li, Jie Qiao
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-03-01
Series:Frontiers in Endocrinology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fendo.2022.821368/full
_version_ 1818312784983621632
author Huiyu Xu
Huiyu Xu
Huiyu Xu
Huiyu Xu
Guoshuang Feng
Kannan Alpadi
Yong Han
Rui Yang
Rui Yang
Rui Yang
Rui Yang
Lixue Chen
Lixue Chen
Lixue Chen
Lixue Chen
Rong Li
Rong Li
Rong Li
Rong Li
Jie Qiao
Jie Qiao
Jie Qiao
Jie Qiao
author_facet Huiyu Xu
Huiyu Xu
Huiyu Xu
Huiyu Xu
Guoshuang Feng
Kannan Alpadi
Yong Han
Rui Yang
Rui Yang
Rui Yang
Rui Yang
Lixue Chen
Lixue Chen
Lixue Chen
Lixue Chen
Rong Li
Rong Li
Rong Li
Rong Li
Jie Qiao
Jie Qiao
Jie Qiao
Jie Qiao
author_sort Huiyu Xu
collection DOAJ
description BackgroundA clinical diagnosis of polycystic ovary syndrome (PCOS) can be tedious with many different required tests and examinations. Furthermore, women with PCOS have increased risks for several metabolic complications, which need long-term health management. Therefore, we attempted to establish an easily applicable model to identify such women at an early stage.ObjectiveTo develop an easy-to-use tool for screening PCOS based on medical records from a large assisted reproductive technology (ART) center in China.Materials and MethodsA retrospective observational cohort from Peking University Third Hospital was used in the study. Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression with 10-fold cross-validation was applied to construct the model. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity values were used to evaluate and compare the models.Design, Setting, and ParticipantsThis retrospective cohort study included 21,219 ovarian stimulation cycle records from January to December 2019 in Peking University Third Hospital.Main Outcomes and MeasuresThe main outcome was whether there was a clinical diagnosis of PCOS. The independent variables included were age, body mass index (BMI), upper limit of menstrual cycle length (UML), basal serum levels of anti-Müllerian hormone (AMH), testosterone androstenedione, antral follicle counts et al.ResultsWe have established a new mathematical model for diagnosing PCOS using serum AMH and androstenedione levels, UML, and BMI, with AUC values of 0.855 (0.838–0.870), 0.848 (0.791–0.891), 0.846 (0.812–0.875) in the training, validation, and testing sets, respectively. The contribution of each predictor to this model were: AMH 41.2%; UML 35.2%; BMI 4.3%; and androstenedione 3.7%. The top 10 groups of women most predicted to develop PCOS were demonstrated. An online tool (http://121.43.113.123:8888/) has been developed to assist Chinese ART clinics.ConclusionsThe models and online tool we established here might be helpful for screening and identifying women with undiagnosed PCOS in Asian populations and could assist in the long-term management of related metabolic disorders.
first_indexed 2024-12-13T08:23:22Z
format Article
id doaj.art-098cfe29b4ed4a67a6f2e93a584aa48d
institution Directory Open Access Journal
issn 1664-2392
language English
last_indexed 2024-12-13T08:23:22Z
publishDate 2022-03-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Endocrinology
spelling doaj.art-098cfe29b4ed4a67a6f2e93a584aa48d2022-12-21T23:53:55ZengFrontiers Media S.A.Frontiers in Endocrinology1664-23922022-03-011310.3389/fendo.2022.821368821368A Model for Predicting Polycystic Ovary Syndrome Using Serum AMH, Menstrual Cycle Length, Body Mass Index and Serum Androstenedione in Chinese Reproductive Aged Population: A Retrospective Cohort StudyHuiyu Xu0Huiyu Xu1Huiyu Xu2Huiyu Xu3Guoshuang Feng4Kannan Alpadi5Yong Han6Rui Yang7Rui Yang8Rui Yang9Rui Yang10Lixue Chen11Lixue Chen12Lixue Chen13Lixue Chen14Rong Li15Rong Li16Rong Li17Rong Li18Jie Qiao19Jie Qiao20Jie Qiao21Jie Qiao22Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, ChinaNational Clinical Research Center for Obstetrics and Gynecology, Beijing, ChinaKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, ChinaBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, ChinaCenter for Clinical Epidemiology and Evidence-Based Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, ChinaThe Predict Health, Houston, TX, United StatesHangzhou Qingguo Medical Technology Co. Ltd., Hangzhou, ChinaCenter for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, ChinaNational Clinical Research Center for Obstetrics and Gynecology, Beijing, ChinaKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, ChinaBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, ChinaCenter for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, ChinaNational Clinical Research Center for Obstetrics and Gynecology, Beijing, ChinaKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, ChinaBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, ChinaCenter for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, ChinaNational Clinical Research Center for Obstetrics and Gynecology, Beijing, ChinaKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, ChinaBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, ChinaCenter for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, ChinaNational Clinical Research Center for Obstetrics and Gynecology, Beijing, ChinaKey Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, ChinaBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, ChinaBackgroundA clinical diagnosis of polycystic ovary syndrome (PCOS) can be tedious with many different required tests and examinations. Furthermore, women with PCOS have increased risks for several metabolic complications, which need long-term health management. Therefore, we attempted to establish an easily applicable model to identify such women at an early stage.ObjectiveTo develop an easy-to-use tool for screening PCOS based on medical records from a large assisted reproductive technology (ART) center in China.Materials and MethodsA retrospective observational cohort from Peking University Third Hospital was used in the study. Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression with 10-fold cross-validation was applied to construct the model. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity values were used to evaluate and compare the models.Design, Setting, and ParticipantsThis retrospective cohort study included 21,219 ovarian stimulation cycle records from January to December 2019 in Peking University Third Hospital.Main Outcomes and MeasuresThe main outcome was whether there was a clinical diagnosis of PCOS. The independent variables included were age, body mass index (BMI), upper limit of menstrual cycle length (UML), basal serum levels of anti-Müllerian hormone (AMH), testosterone androstenedione, antral follicle counts et al.ResultsWe have established a new mathematical model for diagnosing PCOS using serum AMH and androstenedione levels, UML, and BMI, with AUC values of 0.855 (0.838–0.870), 0.848 (0.791–0.891), 0.846 (0.812–0.875) in the training, validation, and testing sets, respectively. The contribution of each predictor to this model were: AMH 41.2%; UML 35.2%; BMI 4.3%; and androstenedione 3.7%. The top 10 groups of women most predicted to develop PCOS were demonstrated. An online tool (http://121.43.113.123:8888/) has been developed to assist Chinese ART clinics.ConclusionsThe models and online tool we established here might be helpful for screening and identifying women with undiagnosed PCOS in Asian populations and could assist in the long-term management of related metabolic disorders.https://www.frontiersin.org/articles/10.3389/fendo.2022.821368/fullPCOSwebsite-based toolAMHmenstrual cycle lengthBMIandrostenedione
spellingShingle Huiyu Xu
Huiyu Xu
Huiyu Xu
Huiyu Xu
Guoshuang Feng
Kannan Alpadi
Yong Han
Rui Yang
Rui Yang
Rui Yang
Rui Yang
Lixue Chen
Lixue Chen
Lixue Chen
Lixue Chen
Rong Li
Rong Li
Rong Li
Rong Li
Jie Qiao
Jie Qiao
Jie Qiao
Jie Qiao
A Model for Predicting Polycystic Ovary Syndrome Using Serum AMH, Menstrual Cycle Length, Body Mass Index and Serum Androstenedione in Chinese Reproductive Aged Population: A Retrospective Cohort Study
Frontiers in Endocrinology
PCOS
website-based tool
AMH
menstrual cycle length
BMI
androstenedione
title A Model for Predicting Polycystic Ovary Syndrome Using Serum AMH, Menstrual Cycle Length, Body Mass Index and Serum Androstenedione in Chinese Reproductive Aged Population: A Retrospective Cohort Study
title_full A Model for Predicting Polycystic Ovary Syndrome Using Serum AMH, Menstrual Cycle Length, Body Mass Index and Serum Androstenedione in Chinese Reproductive Aged Population: A Retrospective Cohort Study
title_fullStr A Model for Predicting Polycystic Ovary Syndrome Using Serum AMH, Menstrual Cycle Length, Body Mass Index and Serum Androstenedione in Chinese Reproductive Aged Population: A Retrospective Cohort Study
title_full_unstemmed A Model for Predicting Polycystic Ovary Syndrome Using Serum AMH, Menstrual Cycle Length, Body Mass Index and Serum Androstenedione in Chinese Reproductive Aged Population: A Retrospective Cohort Study
title_short A Model for Predicting Polycystic Ovary Syndrome Using Serum AMH, Menstrual Cycle Length, Body Mass Index and Serum Androstenedione in Chinese Reproductive Aged Population: A Retrospective Cohort Study
title_sort model for predicting polycystic ovary syndrome using serum amh menstrual cycle length body mass index and serum androstenedione in chinese reproductive aged population a retrospective cohort study
topic PCOS
website-based tool
AMH
menstrual cycle length
BMI
androstenedione
url https://www.frontiersin.org/articles/10.3389/fendo.2022.821368/full
work_keys_str_mv AT huiyuxu amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT huiyuxu amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT huiyuxu amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT huiyuxu amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT guoshuangfeng amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT kannanalpadi amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT yonghan amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT ruiyang amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT ruiyang amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT ruiyang amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT ruiyang amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT lixuechen amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT lixuechen amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT lixuechen amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT lixuechen amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT rongli amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT rongli amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT rongli amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT rongli amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT jieqiao amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT jieqiao amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT jieqiao amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT jieqiao amodelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT huiyuxu modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT huiyuxu modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT huiyuxu modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT huiyuxu modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT guoshuangfeng modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT kannanalpadi modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT yonghan modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT ruiyang modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT ruiyang modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT ruiyang modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT ruiyang modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT lixuechen modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT lixuechen modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT lixuechen modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT lixuechen modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT rongli modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT rongli modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT rongli modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT rongli modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT jieqiao modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT jieqiao modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT jieqiao modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy
AT jieqiao modelforpredictingpolycysticovarysyndromeusingserumamhmenstrualcyclelengthbodymassindexandserumandrostenedioneinchinesereproductiveagedpopulationaretrospectivecohortstudy