Optical properties of organic-silicon photonic crystal nanoslot cavity light source
We theoretically study a dielectric photonic crystal nanoslot cavity immersed in an organic fluid containing near-infrared dyes by means of a full rate equation model including the complete cavity QED effects. Based on the modeling results, we numerically design an organic-silicon cavity light sourc...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2017-03-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/1.4978868 |
Summary: | We theoretically study a dielectric photonic crystal nanoslot cavity immersed in an organic fluid containing near-infrared dyes by means of a full rate equation model including the complete cavity QED effects. Based on the modeling results, we numerically design an organic-silicon cavity light source in which its mode volume, quality factor, and far-field emission pattern are optimized for energy-efficient, high-speed applications. Dye quantum efficiency improved by two orders of magnitude and 3dB modulation bandwidth of a few hundred GHz can be obtained. |
---|---|
ISSN: | 2158-3226 |