Identifying key actors in an international crisis using dynamic network analysis: Syrian crisis case study

Purpose – The purpose of this study is to examine the extent to which dynamic network analysis (DNA), text mining and natural language processing (NLP) are helpful research tools in identifying the key actors in a complex international crisis. The study uses these tools to identify the key actors in...

Full description

Bibliographic Details
Main Authors: Amira S.N. Tawadros, Sally Soliman
Format: Article
Language:English
Published: Emerald Publishing 2019-10-01
Series:Journal of Humanities and Applied Social Sciences
Subjects:
Online Access:https://www.emerald.com/insight/content/doi/10.1108/JHASS-08-2019-0022/full/pdf?title=identifying-key-actors-in-an-international-crisis-using-dynamic-network-analysis-syrian-crisis-case-study
Description
Summary:Purpose – The purpose of this study is to examine the extent to which dynamic network analysis (DNA), text mining and natural language processing (NLP) are helpful research tools in identifying the key actors in a complex international crisis. The study uses these tools to identify the key actors in the Syrian crisis as a case study to validate the proposed algorithm. Design/methodology/approach – To achieve its main purpose, the study uses a collection of three methodologies, namely, DNA, text mining and NLP. Findings – The results of the analysis show four key actors in the Syrian crisis, namely, Russia, the USA, Turkey and China. The results also reveal changes in their powerful positions from 2012 to 2016, which matches the changes that occurred in the real world. The matching between the findings of the proposed algorithm and the real world events that happened in Syria validate our proposed algorithm and proves that the algorithm can be used in identifying the key actors in complex international crises. Originality/value – The importance of the study lies in two main points. It proposes a new algorithm that mixes NLP, network extraction from textual unstructured data and DNA to understand and monitor changes occurring in a complex international crisis. It applies the proposed algorithm on the Syrian crisis as a case study to identify the key actors and hence validate the proposed algorithm.
ISSN:2632-279X