Characterizations of Fock-type spaces of eigenfunctions on R<sup>n</sup>

In this paper, we prove a norm equivalence for an exponential type weighted integral of an eigenfunction and its derivative on R<sup>n</sup>. As applications, we characterize Fock-type spaces of eigenfunctions on R<sup>n</sup> in terms of Lipschitz type conditions and double...

Full description

Bibliographic Details
Main Authors: Xi Fu, Xiaoqiang Xie
Format: Article
Language:English
Published: AIMS Press 2022-06-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2022852?viewType=HTML
_version_ 1818113408656998400
author Xi Fu
Xiaoqiang Xie
author_facet Xi Fu
Xiaoqiang Xie
author_sort Xi Fu
collection DOAJ
description In this paper, we prove a norm equivalence for an exponential type weighted integral of an eigenfunction and its derivative on R<sup>n</sup>. As applications, we characterize Fock-type spaces of eigenfunctions on R<sup>n</sup> in terms of Lipschitz type conditions and double integral conditions. These obtained results are extensions of the corresponding ones in classcial Fock space.
first_indexed 2024-12-11T03:34:22Z
format Article
id doaj.art-09a6ded301b448be9f1addf678b5bb35
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-11T03:34:22Z
publishDate 2022-06-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-09a6ded301b448be9f1addf678b5bb352022-12-22T01:22:17ZengAIMS PressAIMS Mathematics2473-69882022-06-0178155501556210.3934/math.2022852Characterizations of Fock-type spaces of eigenfunctions on R<sup>n</sup>Xi Fu 0Xiaoqiang Xie1Department of Mathematics, College of Arts and Sciences, Shanghai Polytechnic University, Shanghai 201209, ChinaDepartment of Mathematics, College of Arts and Sciences, Shanghai Polytechnic University, Shanghai 201209, ChinaIn this paper, we prove a norm equivalence for an exponential type weighted integral of an eigenfunction and its derivative on R<sup>n</sup>. As applications, we characterize Fock-type spaces of eigenfunctions on R<sup>n</sup> in terms of Lipschitz type conditions and double integral conditions. These obtained results are extensions of the corresponding ones in classcial Fock space.https://www.aimspress.com/article/doi/10.3934/math.2022852?viewType=HTMLeigenfunctionfock spacelipschitz conditiondouble integral condition
spellingShingle Xi Fu
Xiaoqiang Xie
Characterizations of Fock-type spaces of eigenfunctions on R<sup>n</sup>
AIMS Mathematics
eigenfunction
fock space
lipschitz condition
double integral condition
title Characterizations of Fock-type spaces of eigenfunctions on R<sup>n</sup>
title_full Characterizations of Fock-type spaces of eigenfunctions on R<sup>n</sup>
title_fullStr Characterizations of Fock-type spaces of eigenfunctions on R<sup>n</sup>
title_full_unstemmed Characterizations of Fock-type spaces of eigenfunctions on R<sup>n</sup>
title_short Characterizations of Fock-type spaces of eigenfunctions on R<sup>n</sup>
title_sort characterizations of fock type spaces of eigenfunctions on r sup n sup
topic eigenfunction
fock space
lipschitz condition
double integral condition
url https://www.aimspress.com/article/doi/10.3934/math.2022852?viewType=HTML
work_keys_str_mv AT xifu characterizationsoffocktypespacesofeigenfunctionsonrsupnsup
AT xiaoqiangxie characterizationsoffocktypespacesofeigenfunctionsonrsupnsup