Stick-slip motion of a two-dimensional coupled dry friction oscillator
In view of the widely existed two-dimensional friction problems in engineering, an oscillator model which considers the coupling of and direction is established by introducing oblique springs. With the concept of the friction force direction angle being defined to determine the components of the sta...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Hebei University of Science and Technology
2018-12-01
|
Series: | Journal of Hebei University of Science and Technology |
Subjects: | |
Online Access: | http://xuebao.hebust.edu.cn/hbkjdx/ch/reader/create_pdf.aspx?file_no=b201806003&flag=1&journal_ |
_version_ | 1818025536599883776 |
---|---|
author | Shangwen HE Wenzhen JIA Bingbing HE Yonggang MEI Shasha ZHANG |
author_facet | Shangwen HE Wenzhen JIA Bingbing HE Yonggang MEI Shasha ZHANG |
author_sort | Shangwen HE |
collection | DOAJ |
description | In view of the widely existed two-dimensional friction problems in engineering, an oscillator model which considers the coupling of and direction is established by introducing oblique springs. With the concept of the friction force direction angle being defined to determine the components of the static and kinetic friction force vector, and considering that stick-slip motion may occur when the oscillator is vibrating, a method for analyzing stick-slip motion of a two-dimensional coupled dry friction oscillator is proposed, and complex stick-slip transition boundaries of the two-dimensional coupled dry friction oscillator are given. Based on an exponential-type dynamic friction model, numerical simulation is carried out for stick-slip motion of the two-dimensional coupled dry friction oscillator, with the simulation results and the law of the system solution changing with excitation frequency and phase angle under three different working conditions at x direction and y direction, namely the same excitation frequency and phase angle, the same excitation frequency and different phase angle, and different excitation frequency and phase angle, are provided. Numerical results indicate that transition of stick-slip state may occur in the motion of the two-dimensional coupled dry friction oscillator; in comparison with the first two conditions, when frequencies and phase angle of and direction of the excitation are not equal, trajectory of the mass is a more complicated plane curve, the system can have multiple stick-slip transitions in one cycle at the same time; with the same frequency of and direction, the response of the oscillator has no fractional frequencies and is periodic by altering the frequency and phase angle. The proposed method can provide reference for further study of dynamics and motion stability of a two-dimensional coupled dry friction oscillator. |
first_indexed | 2024-12-10T04:17:40Z |
format | Article |
id | doaj.art-09a96a7ef6564540beb52bf1577081cd |
institution | Directory Open Access Journal |
issn | 1008-1542 |
language | zho |
last_indexed | 2024-12-10T04:17:40Z |
publishDate | 2018-12-01 |
publisher | Hebei University of Science and Technology |
record_format | Article |
series | Journal of Hebei University of Science and Technology |
spelling | doaj.art-09a96a7ef6564540beb52bf1577081cd2022-12-22T02:02:32ZzhoHebei University of Science and TechnologyJournal of Hebei University of Science and Technology1008-15422018-12-0139649450110.7535/hbkd.2018yx06003b201806003Stick-slip motion of a two-dimensional coupled dry friction oscillatorShangwen HE0Wenzhen JIA1Bingbing HE2Yonggang MEI3Shasha ZHANG4School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, Henan 450001, ChinaSchool of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, Henan 450001, ChinaCollege of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, ChinaKey Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, ChinaHenan Health Cadre College, Zhengzhou, Henan 450008, ChinaIn view of the widely existed two-dimensional friction problems in engineering, an oscillator model which considers the coupling of and direction is established by introducing oblique springs. With the concept of the friction force direction angle being defined to determine the components of the static and kinetic friction force vector, and considering that stick-slip motion may occur when the oscillator is vibrating, a method for analyzing stick-slip motion of a two-dimensional coupled dry friction oscillator is proposed, and complex stick-slip transition boundaries of the two-dimensional coupled dry friction oscillator are given. Based on an exponential-type dynamic friction model, numerical simulation is carried out for stick-slip motion of the two-dimensional coupled dry friction oscillator, with the simulation results and the law of the system solution changing with excitation frequency and phase angle under three different working conditions at x direction and y direction, namely the same excitation frequency and phase angle, the same excitation frequency and different phase angle, and different excitation frequency and phase angle, are provided. Numerical results indicate that transition of stick-slip state may occur in the motion of the two-dimensional coupled dry friction oscillator; in comparison with the first two conditions, when frequencies and phase angle of and direction of the excitation are not equal, trajectory of the mass is a more complicated plane curve, the system can have multiple stick-slip transitions in one cycle at the same time; with the same frequency of and direction, the response of the oscillator has no fractional frequencies and is periodic by altering the frequency and phase angle. The proposed method can provide reference for further study of dynamics and motion stability of a two-dimensional coupled dry friction oscillator.http://xuebao.hebust.edu.cn/hbkjdx/ch/reader/create_pdf.aspx?file_no=b201806003&flag=1&journal_machine dynamics and vibrationstick-slip motiontwo-dimensional dry frictionfriction force direction anglecouplingvibration characteristic |
spellingShingle | Shangwen HE Wenzhen JIA Bingbing HE Yonggang MEI Shasha ZHANG Stick-slip motion of a two-dimensional coupled dry friction oscillator Journal of Hebei University of Science and Technology machine dynamics and vibration stick-slip motion two-dimensional dry friction friction force direction angle coupling vibration characteristic |
title | Stick-slip motion of a two-dimensional coupled dry friction oscillator |
title_full | Stick-slip motion of a two-dimensional coupled dry friction oscillator |
title_fullStr | Stick-slip motion of a two-dimensional coupled dry friction oscillator |
title_full_unstemmed | Stick-slip motion of a two-dimensional coupled dry friction oscillator |
title_short | Stick-slip motion of a two-dimensional coupled dry friction oscillator |
title_sort | stick slip motion of a two dimensional coupled dry friction oscillator |
topic | machine dynamics and vibration stick-slip motion two-dimensional dry friction friction force direction angle coupling vibration characteristic |
url | http://xuebao.hebust.edu.cn/hbkjdx/ch/reader/create_pdf.aspx?file_no=b201806003&flag=1&journal_ |
work_keys_str_mv | AT shangwenhe stickslipmotionofatwodimensionalcoupleddryfrictionoscillator AT wenzhenjia stickslipmotionofatwodimensionalcoupleddryfrictionoscillator AT bingbinghe stickslipmotionofatwodimensionalcoupleddryfrictionoscillator AT yonggangmei stickslipmotionofatwodimensionalcoupleddryfrictionoscillator AT shashazhang stickslipmotionofatwodimensionalcoupleddryfrictionoscillator |