Summary: | Dengue virus (DENV) infection has become a critically important globally prevalent infectious disease, especially in tropical and subtropical countries. Since neither currently exists, there is an urgent need for an effective vaccine to prevent, and a specific drug to treat DENV infection. Therapeutic peptides represent an attractive alternative for development into anti-DENV drugs due to their safety and their diverse biological and chemical properties. We recently reported novel bioactive peptides extracted from the Asian medicinal plant <i>Acacia catechu</i> that efficiently inhibited all four DENV serotypes. In this study, we investigated the anti-DENV activity of a synthetic bioactive peptide derived from this plant. The most effective peptide (designated Pep-RTYM) inhibited DENV infection with a half-maximal inhibition concentration value of 7.9 μM. Time-of-addition study demonstrated that Pep-RTYM interacted with DENV particles and inhibited cellular entry. Pep-RTYM at 50 μM significantly reduced DENV production in Vero-kidney epithelial cells about 1000-fold, but it could decrease the virus production in Huh7 hepatocyte cells approximately 40-fold. Binding of Pep-RTYM to DENV particles may prevent virus interaction with cellular receptor and subsequent virus entry. This finding suggests a potential role of Pep-RTYM in the development of a novel anti-DENV drug.
|