Summary: | Recycling plant-based materials for various applications not only reduces the harm to the environment but also presents an excellent green source for nanomaterial synthesis. Being chiral and biodegradable makes cellulose, which is an organic polymer, an economic and easy-to-access plant-derived green material. Cellulose can be synthesized into nanostructures for a vast array of high-demand applications, such as drug delivery; biomedicines, which includes “biosensors and diagnostics”; medical implants; skin tissue healing; wastewater treatment; touch screen technology; electronic skin; human–machine interfaces; flexible devices; energy storage devices; clothes; packaging; and cosmetics. The daily newspapers that are delivered to our homes can be one of the best sources of cellulose for us. Our work in this study concentrated on removing nanocrystalline cellulose from newspapers. To begin, we deinked the newspapers and then the deinked pulp was transformed into its nanostructures, or nanocrystalline cellulose, to achieve a high aspect ratio, on the one hand, using chemicals like NaOH, thiourea, etc., and on the other side, via a mechanical process. We used a variety of characterization techniques, including scanning electron microscopy to study morphological properties, X-ray diffraction, and dynamic light scattering for dimensional analysis, Fourier transforms infrared spectroscopy for thermogravimetric analysis, and others, to confirm that the synthesized materials had achieved the intended outcomes. A high aspect ratio enables us to create surfaces with a huge surface area with very little synthetic material. The final product, which was created by synthesis, has been discovered to have features that are identical to those of nanocrystalline cellulose, which is available for purchase in the market for use in laboratory purposes. To make nanocomposites, this nanocrystalline cellulose can be combined with various organic and inorganic polymers, which can be further used as a base material for energy storage devices. In this paper, we compared our materials at different time durations used in synthesis.
|