Research on neural network training retrieval based on microwave radiometer observed brightness temperature data set
In order to improve the accuracy of the ground-based microwave radiometer retrievals of the atmospheric temperature and humidity profile, and enhance the observation performance of locally deployed devices, this study implements two kinds of neural network methods for ground-based radiometer. One is...
Päätekijät: | Jiebo YANG, Ke CHEN, Guirong XU, Liangqi GUI, Liang LANG, Mingyang ZHANG, Feng JIN, Ruoming ZHAO, Chunyu SUN |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | zho |
Julkaistu: |
Editorial Office of Torrential Rain and Disasters
2022-08-01
|
Sarja: | 暴雨灾害 |
Aiheet: | |
Linkit: | http://www.byzh.org.cn/cn/article/doi/10.3969/j.issn.1004-9045.2022.04.012 |
Samankaltaisia teoksia
-
Measurement of Solar Absolute Brightness Temperature Using a Ground-Based Multichannel Microwave Radiometer
Tekijä: Lianfa Lei, et al.
Julkaistu: (2021-07-01) -
Wind Profile Retrieval Based on LSTM Algorithm and Mobile Observation of Brightness Temperature over the Tibetan Plateau
Tekijä: Bing Chen, et al.
Julkaistu: (2024-03-01) -
An Improved 1D-VAR Retrieval Algorithm of Temperature Profiles from an Ocean-Based Microwave Radiometer
Tekijä: Hualong Yan, et al.
Julkaistu: (2022-05-01) -
Radiative Transfer Model Simulations for Ground-Based Microwave Radiometers in North China
Tekijä: Wenying He, et al.
Julkaistu: (2021-12-01) -
A RADIOMETER FOR METEOROLOGICAL MEASUREMENTS WITH ACCURATE CALIBRATION BY THE SKY BRIGHTNESS TEMPERATURE
Tekijä: V. A. Kabanov
Julkaistu: (2016-09-01)