Graphene Oxide Loaded on TiO<sub>2</sub>-Nanotube-Modified Ti Regulates the Behavior of Human Gingival Fibroblasts

Surface topography, protein adsorption, and the loading of coating materials can affect soft tissue sealing. Graphene oxide (GO) is a promising candidate for improving material surface functionalization to facilitate soft tissue integration between cells and biomaterials. In this study, TiO<sub&g...

Full description

Bibliographic Details
Main Authors: Xu Cao, Keyi Wu, Caiyun Wang, Yatong Guo, Ran Lu, Xin Wang, Su Chen
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/23/15/8723
Description
Summary:Surface topography, protein adsorption, and the loading of coating materials can affect soft tissue sealing. Graphene oxide (GO) is a promising candidate for improving material surface functionalization to facilitate soft tissue integration between cells and biomaterials. In this study, TiO<sub>2</sub> nanotubes (TNTs) were prepared by the anodization of Ti, and TNT-graphene oxide composites (TNT-GO) were prepared by subsequent electroplating. The aim of this study was to investigate the effect of TNTs and TNT-GO surface modifications on the behavior of human gingival fibroblasts (HGFs). Commercially pure Ti and TNTs were used as the control group, and the TNT-GO surface was used as the experimental group. Scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction were used to perform sample characterization. Cell adhesion, cell proliferation, cell immunofluorescence staining, a wound-healing assay, real-time reverse-transcriptase polymerase chain reaction (RT-PCR), and Western blotting showed that the proliferation, adhesion, migration, and adhesion-related relative gene expression of HGFs on TNT-GO were significantly enhanced compared to the control groups, which may be mediated by the activation of integrin β1 and the MAPK-Erk1/2 pathway. Our findings suggest that the biological reactivity of HGFs can be enhanced by the TNT-GO surface, thereby improving the soft tissue sealing ability.
ISSN:1661-6596
1422-0067