Learning pairing symmetries in disordered superconductors using spin-polarized local density of states

We construct an artificial neural network to study the pairing symmetries in disordered superconductors. For Hamiltonians on square lattice with s-wave, d-wave, and nematic pairing potentials, we use the spin-polarized local density of states near a magnetic impurity in the clean system to train the...

Full description

Bibliographic Details
Main Authors: Liang Chen, Chen-Xi Wang, Rong-Sheng Han, Ye-Qi Zhang
Format: Article
Language:English
Published: IOP Publishing 2020-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/ab8261
Description
Summary:We construct an artificial neural network to study the pairing symmetries in disordered superconductors. For Hamiltonians on square lattice with s-wave, d-wave, and nematic pairing potentials, we use the spin-polarized local density of states near a magnetic impurity in the clean system to train the neural network. We find that, when the depth of the artificial neural network is sufficient large, it will have the power to predict the pairing symmetries in disordered superconductors. In a large parameter regime of the potential disorder, the artificial neural network predicts the correct pairing symmetries with relatively high confidences.
ISSN:1367-2630