Application of Gamma Attenuation Technique and Artificial Intelligence to Detect Scale Thickness in Pipelines in Which Two-Phase Flows with Different Flow Regimes and Void Fractions Exist

Scale deposits can reduce equipment efficiency in the oil and petrochemical industry. The gamma attenuation technique can be used as a non-invasive effective tool for detecting scale deposits in petroleum pipelines. The goal of this study is to propose a dual-energy gamma attenuation method with rad...

Full description

Bibliographic Details
Main Authors: Mohammed Alamoudi, Mohammad Amir Sattari, Mohammed Balubaid, Ehsan Eftekhari-Zadeh, Ehsan Nazemi, Osman Taylan, El Mostafa Kalmoun
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/7/1198
Description
Summary:Scale deposits can reduce equipment efficiency in the oil and petrochemical industry. The gamma attenuation technique can be used as a non-invasive effective tool for detecting scale deposits in petroleum pipelines. The goal of this study is to propose a dual-energy gamma attenuation method with radial basis function neural network (RBFNN) to determine scale thickness in petroleum pipelines in which two-phase flows with different symmetrical flow regimes and void fractions exist. The detection system consists of a dual-energy gamma source, with Ba-133 and Cs-137 radioisotopes and two 2.54-cm × 2.54-cm sodium iodide (NaI) detectors to record photons. The first detector related to transmitted photons, and the second one to scattered photons. The transmission detector recorded two signals, which were the counts under photopeak of Ba-133 and Cs-137 with the energy of 356 keV and 662 keV, respectively. The one signal recorded in the scattering detector, total counts, was applied to RBFNN as the inputs, and scale thickness was assigned as the output.
ISSN:2073-8994