Band Structure Near the Dirac Point in HgTe Quantum Wells with Critical Thickness

Mercury telluride (HgTe) thin films with a critical thickness of 6.5 nm are predicted to possess a gapless Dirac-like band structure. We report a comprehensive study on gated and optically doped samples by magnetooptical spectroscopy in the THz range. The quasi-classical analysis of the cyclotron re...

Full description

Bibliographic Details
Main Authors: Alexey Shuvaev, Vlad Dziom, Jan Gospodarič, Elena G. Novik, Alena A. Dobretsova, Nikolay N. Mikhailov, Ze Don Kvon, Andrei Pimenov
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/12/14/2492
Description
Summary:Mercury telluride (HgTe) thin films with a critical thickness of 6.5 nm are predicted to possess a gapless Dirac-like band structure. We report a comprehensive study on gated and optically doped samples by magnetooptical spectroscopy in the THz range. The quasi-classical analysis of the cyclotron resonance allowed the mapping of the band dispersion of Dirac charge carriers in a broad range of electron and hole doping. A smooth transition through the charge neutrality point between Dirac holes and electrons was observed. An additional peak coming from a second type of holes with an almost density-independent mass of around <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.04</mn><msub><mi>m</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> was detected in the hole-doping range and attributed to an asymmetric spin splitting of the Dirac cone. Spectroscopic evidence for disorder-induced band energy fluctuations could not be detected in present cyclotron resonance experiments.
ISSN:2079-4991