Advances in Ionospheric Space Weather by Using FORMOSAT-7/COSMIC-2 GNSS Radio Occultations

This paper provides an overview of the contributions of the space-based global navigation satellite system (GNSS) radio occultation (RO) measurements from the FORMOSAT-7/COSMIC2 (F7/C2) mission in advancing our understanding of ionospheric plasma physics in the purview of space weather. The global p...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Jann-Yenq Liu, Chien-Hung Lin, Panthalingal Krishnanunni Rajesh, Chi-Yen Lin, Fu-Yuan Chang, I-Te Lee, Tzu-Wei Fang, Dominic Fuller-Rowell, Shih-Ping Chen
Định dạng: Bài viết
Ngôn ngữ:English
Được phát hành: MDPI AG 2022-05-01
Loạt:Atmosphere
Những chủ đề:
Truy cập trực tuyến:https://www.mdpi.com/2073-4433/13/6/858
Miêu tả
Tóm tắt:This paper provides an overview of the contributions of the space-based global navigation satellite system (GNSS) radio occultation (RO) measurements from the FORMOSAT-7/COSMIC2 (F7/C2) mission in advancing our understanding of ionospheric plasma physics in the purview of space weather. The global positioning system (GPS) occultation experiment (GOX) onboard FORMOSAT-3/COSMIC (F3/C), with more than four and half million ionospheric RO soundings during April 2006–May 2020, offered a unique three-dimensional (3D) perspective to examine the global electron density distribution and unravel the underlying physical processes. The current F7/C2 carries TGRS (Tri-GNSS radio occultation system) has tracked more than 4000 RO profiles within ±35° latitudes per day since 25 June 2019. Taking advantage of the larger number of low-latitude soundings, the F7/C2 TGRS observations were used here to examine the 3D electron density structures and electrodynamics of the equatorial ionization anomaly, plasma depletion bays, and four-peaked patterns, as well as the S4 index of GNSS signal scintillations in the equatorial and low-latitude ionosphere, which have been previously investigated by using F3/C measurements. The results demonstrated that the denser low-latitude soundings enable the construction of monthly global electron density maps as well the altitude-latitude profiles with higher spatial and temporal resolution windows, and revealed longitudinal and seasonal characteristics in greater detail. The enhanced F7/C2 RO observations were further applied by the Central Weather Bureau/Space Weather Operation Office (CWB/SWOO) in Taiwan and the National Oceanic and Atmospheric Administration/Space Weather Prediction Center (NOAA/SWPC) in the United States to specify the ionospheric conditions for issuing alerts and warnings for positioning, navigation, and communication customers. A brief description of the two models is also provided.
số ISSN:2073-4433