A remark on prime ideals
If M is a torsion-free module over an integral domain, then we show that for each submodule N of M the envelope EM (N ) of N in M is an essential extension of N. In particular, if N is divisible then EM (N ) = N . The last condition says that N is a semiprime submodule of M if N is proper. Let M be...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Extremadura
2020-06-01
|
Series: | Extracta Mathematicae |
Subjects: | |
Online Access: | https://publicaciones.unex.es/index.php/EM/article/view/126 |
Summary: | If M is a torsion-free module over an integral domain, then we show that for each submodule N of M the envelope EM (N ) of N in M is an essential extension of N. In particular, if N is divisible then EM (N ) = N . The last condition says that N is a semiprime submodule of M if N is proper.
Let M be a module over a ring R such that for any ideals a, b of R, (a ∩ b)M = aM ∩ bM . If N is an irreducible and weakly semiprime submodule of M , then we prove that (N :R M ) is a prime ideal of R. As a result, we obtain that if p is an irreducible ideal of a ring R such that a2 ⊆ p (a is an ideal of R) ⇒ a ⊆ p, then p is a prime ideal. |
---|---|
ISSN: | 0213-8743 2605-5686 |