Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys
To improve the heat resistance of titanium alloys, the effects of Y content on the precipitation behavior, oxidation resistance and high-temperature mechanical properties of as-cast Ti-5Al-2.75Sn-3Zr-1.5Mo-0.45Si-1W-2Nb-xY (x = 0.1, 0.2, 0.4) alloys were systematically investigated. The microstructu...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-07-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/16/13/4784 |
_version_ | 1797591251307986944 |
---|---|
author | Jiafeng Shen Binguo Fu Yufeng Wang Tianshun Dong Jingkun Li Guolu Li Jinhai Liu |
author_facet | Jiafeng Shen Binguo Fu Yufeng Wang Tianshun Dong Jingkun Li Guolu Li Jinhai Liu |
author_sort | Jiafeng Shen |
collection | DOAJ |
description | To improve the heat resistance of titanium alloys, the effects of Y content on the precipitation behavior, oxidation resistance and high-temperature mechanical properties of as-cast Ti-5Al-2.75Sn-3Zr-1.5Mo-0.45Si-1W-2Nb-xY (x = 0.1, 0.2, 0.4) alloys were systematically investigated. The microstructures, phase evolution and oxidation scales were characterized by XRD, Laser Raman, XPS, SEM and TEM. The properties were studied by cyclic oxidation as well as room- and high-temperature tensile testing. The results show that the microstructures of the alloys are of the widmanstätten structure with typical basket weave features, and the prior β grain size and α lamellar spacing are refined with the increase of Y content. The precipitates in the alloys mainly include Y<sub>2</sub>O<sub>3</sub> and (TiZr)<sub>6</sub>Si<sub>3</sub> silicide phases. The Y<sub>2</sub>O<sub>3</sub> phase has specific orientation relationships with the α-Ti phase: (002)<sub>Y<sub>2</sub>O<sub>3</sub></sub> // (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>20)<sub>α-Ti</sub>, [110]<sub>Y<sub>2</sub>O<sub>3</sub></sub> // [<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>4</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>401]<sub>α-Ti</sub>. (TiZr)<sub>6</sub>Si<sub>3</sub> has an orientation relationship with the β-Ti phase: (02<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>2</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>)<sub>(TiZr)<sub>6</sub>Si<sub>3</sub></sub> // (011)<sub>β-Ti</sub>, [<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>2<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>6]<sub>(TiZr)<sub>6</sub>Si<sub>3</sub></sub> // [04<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>4</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>]<sub>β-Ti</sub>. The 0.1 wt.% Y composition alloy has the best high-temperature oxidation resistance at different temperatures. The oxidation behaviors of the alloys follow the linear-parabolic law, and the oxidation products of the alloys are composed of rutile-TiO<sub>2</sub>, anatase-TiO<sub>2</sub>, Y<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub>. The room-temperature and 700 °C UTS of the alloys decreases first and then increases with the increase of Y content; the 0.1 wt.% Y composition alloy has the best room-temperature mechanical properties with a UTS of 1012 MPa and elongation of 1.0%. The 700 °C UTS and elongation of the alloy with 0.1 wt.% Y is 694 MPa and 9.8%, showing an optimal comprehensive performance. The UTS and elongation of the alloys at 750 °C increase first and then decrease with the increase of Y content. The optimal UTS and elongation of the alloy is 556 MPa and 10.1% obtained in 0.2 wt.% Y composition alloy. The cleavage and dimples fractures are the primary fracture mode for the room- and high-temperature tensile fracture, respectively. |
first_indexed | 2024-03-11T01:35:48Z |
format | Article |
id | doaj.art-0a0a0efe23fd46199a12e958dad9c3bf |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-11T01:35:48Z |
publishDate | 2023-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-0a0a0efe23fd46199a12e958dad9c3bf2023-11-18T16:59:45ZengMDPI AGMaterials1996-19442023-07-011613478410.3390/ma16134784Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium AlloysJiafeng Shen0Binguo Fu1Yufeng Wang2Tianshun Dong3Jingkun Li4Guolu Li5Jinhai Liu6Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, ChinaKey Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, ChinaAerospace Product Center, Tianjin Institute of Aerospace Mechanical and Electrical Equipment, Tianjin 300301, ChinaKey Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, ChinaKey Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, ChinaKey Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, ChinaKey Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, ChinaTo improve the heat resistance of titanium alloys, the effects of Y content on the precipitation behavior, oxidation resistance and high-temperature mechanical properties of as-cast Ti-5Al-2.75Sn-3Zr-1.5Mo-0.45Si-1W-2Nb-xY (x = 0.1, 0.2, 0.4) alloys were systematically investigated. The microstructures, phase evolution and oxidation scales were characterized by XRD, Laser Raman, XPS, SEM and TEM. The properties were studied by cyclic oxidation as well as room- and high-temperature tensile testing. The results show that the microstructures of the alloys are of the widmanstätten structure with typical basket weave features, and the prior β grain size and α lamellar spacing are refined with the increase of Y content. The precipitates in the alloys mainly include Y<sub>2</sub>O<sub>3</sub> and (TiZr)<sub>6</sub>Si<sub>3</sub> silicide phases. The Y<sub>2</sub>O<sub>3</sub> phase has specific orientation relationships with the α-Ti phase: (002)<sub>Y<sub>2</sub>O<sub>3</sub></sub> // (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>20)<sub>α-Ti</sub>, [110]<sub>Y<sub>2</sub>O<sub>3</sub></sub> // [<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>4</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>401]<sub>α-Ti</sub>. (TiZr)<sub>6</sub>Si<sub>3</sub> has an orientation relationship with the β-Ti phase: (02<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>2</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>)<sub>(TiZr)<sub>6</sub>Si<sub>3</sub></sub> // (011)<sub>β-Ti</sub>, [<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>2<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>6]<sub>(TiZr)<sub>6</sub>Si<sub>3</sub></sub> // [04<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>4</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>]<sub>β-Ti</sub>. The 0.1 wt.% Y composition alloy has the best high-temperature oxidation resistance at different temperatures. The oxidation behaviors of the alloys follow the linear-parabolic law, and the oxidation products of the alloys are composed of rutile-TiO<sub>2</sub>, anatase-TiO<sub>2</sub>, Y<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub>. The room-temperature and 700 °C UTS of the alloys decreases first and then increases with the increase of Y content; the 0.1 wt.% Y composition alloy has the best room-temperature mechanical properties with a UTS of 1012 MPa and elongation of 1.0%. The 700 °C UTS and elongation of the alloy with 0.1 wt.% Y is 694 MPa and 9.8%, showing an optimal comprehensive performance. The UTS and elongation of the alloys at 750 °C increase first and then decrease with the increase of Y content. The optimal UTS and elongation of the alloy is 556 MPa and 10.1% obtained in 0.2 wt.% Y composition alloy. The cleavage and dimples fractures are the primary fracture mode for the room- and high-temperature tensile fracture, respectively.https://www.mdpi.com/1996-1944/16/13/4784high-temperature titanium alloyY contentprecipitated phasesoxidation behaviormechanical property |
spellingShingle | Jiafeng Shen Binguo Fu Yufeng Wang Tianshun Dong Jingkun Li Guolu Li Jinhai Liu Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys Materials high-temperature titanium alloy Y content precipitated phases oxidation behavior mechanical property |
title | Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys |
title_full | Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys |
title_fullStr | Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys |
title_full_unstemmed | Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys |
title_short | Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys |
title_sort | effect of y content on precipitation behavior oxidation and mechanical properties of as cast high temperature titanium alloys |
topic | high-temperature titanium alloy Y content precipitated phases oxidation behavior mechanical property |
url | https://www.mdpi.com/1996-1944/16/13/4784 |
work_keys_str_mv | AT jiafengshen effectofycontentonprecipitationbehavioroxidationandmechanicalpropertiesofascasthightemperaturetitaniumalloys AT binguofu effectofycontentonprecipitationbehavioroxidationandmechanicalpropertiesofascasthightemperaturetitaniumalloys AT yufengwang effectofycontentonprecipitationbehavioroxidationandmechanicalpropertiesofascasthightemperaturetitaniumalloys AT tianshundong effectofycontentonprecipitationbehavioroxidationandmechanicalpropertiesofascasthightemperaturetitaniumalloys AT jingkunli effectofycontentonprecipitationbehavioroxidationandmechanicalpropertiesofascasthightemperaturetitaniumalloys AT guoluli effectofycontentonprecipitationbehavioroxidationandmechanicalpropertiesofascasthightemperaturetitaniumalloys AT jinhailiu effectofycontentonprecipitationbehavioroxidationandmechanicalpropertiesofascasthightemperaturetitaniumalloys |