Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys

To improve the heat resistance of titanium alloys, the effects of Y content on the precipitation behavior, oxidation resistance and high-temperature mechanical properties of as-cast Ti-5Al-2.75Sn-3Zr-1.5Mo-0.45Si-1W-2Nb-xY (x = 0.1, 0.2, 0.4) alloys were systematically investigated. The microstructu...

Full description

Bibliographic Details
Main Authors: Jiafeng Shen, Binguo Fu, Yufeng Wang, Tianshun Dong, Jingkun Li, Guolu Li, Jinhai Liu
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/16/13/4784
_version_ 1797591251307986944
author Jiafeng Shen
Binguo Fu
Yufeng Wang
Tianshun Dong
Jingkun Li
Guolu Li
Jinhai Liu
author_facet Jiafeng Shen
Binguo Fu
Yufeng Wang
Tianshun Dong
Jingkun Li
Guolu Li
Jinhai Liu
author_sort Jiafeng Shen
collection DOAJ
description To improve the heat resistance of titanium alloys, the effects of Y content on the precipitation behavior, oxidation resistance and high-temperature mechanical properties of as-cast Ti-5Al-2.75Sn-3Zr-1.5Mo-0.45Si-1W-2Nb-xY (x = 0.1, 0.2, 0.4) alloys were systematically investigated. The microstructures, phase evolution and oxidation scales were characterized by XRD, Laser Raman, XPS, SEM and TEM. The properties were studied by cyclic oxidation as well as room- and high-temperature tensile testing. The results show that the microstructures of the alloys are of the widmanstätten structure with typical basket weave features, and the prior β grain size and α lamellar spacing are refined with the increase of Y content. The precipitates in the alloys mainly include Y<sub>2</sub>O<sub>3</sub> and (TiZr)<sub>6</sub>Si<sub>3</sub> silicide phases. The Y<sub>2</sub>O<sub>3</sub> phase has specific orientation relationships with the α-Ti phase: (002)<sub>Y<sub>2</sub>O<sub>3</sub></sub> // (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>20)<sub>α-Ti</sub>, [110]<sub>Y<sub>2</sub>O<sub>3</sub></sub> // [<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>4</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>401]<sub>α-Ti</sub>. (TiZr)<sub>6</sub>Si<sub>3</sub> has an orientation relationship with the β-Ti phase: (02<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>2</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>)<sub>(TiZr)<sub>6</sub>Si<sub>3</sub></sub> // (011)<sub>β-Ti</sub>, [<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>2<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>6]<sub>(TiZr)<sub>6</sub>Si<sub>3</sub></sub> // [04<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>4</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>]<sub>β-Ti</sub>. The 0.1 wt.% Y composition alloy has the best high-temperature oxidation resistance at different temperatures. The oxidation behaviors of the alloys follow the linear-parabolic law, and the oxidation products of the alloys are composed of rutile-TiO<sub>2</sub>, anatase-TiO<sub>2</sub>, Y<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub>. The room-temperature and 700 °C UTS of the alloys decreases first and then increases with the increase of Y content; the 0.1 wt.% Y composition alloy has the best room-temperature mechanical properties with a UTS of 1012 MPa and elongation of 1.0%. The 700 °C UTS and elongation of the alloy with 0.1 wt.% Y is 694 MPa and 9.8%, showing an optimal comprehensive performance. The UTS and elongation of the alloys at 750 °C increase first and then decrease with the increase of Y content. The optimal UTS and elongation of the alloy is 556 MPa and 10.1% obtained in 0.2 wt.% Y composition alloy. The cleavage and dimples fractures are the primary fracture mode for the room- and high-temperature tensile fracture, respectively.
first_indexed 2024-03-11T01:35:48Z
format Article
id doaj.art-0a0a0efe23fd46199a12e958dad9c3bf
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-11T01:35:48Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-0a0a0efe23fd46199a12e958dad9c3bf2023-11-18T16:59:45ZengMDPI AGMaterials1996-19442023-07-011613478410.3390/ma16134784Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium AlloysJiafeng Shen0Binguo Fu1Yufeng Wang2Tianshun Dong3Jingkun Li4Guolu Li5Jinhai Liu6Key Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, ChinaKey Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, ChinaAerospace Product Center, Tianjin Institute of Aerospace Mechanical and Electrical Equipment, Tianjin 300301, ChinaKey Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, ChinaKey Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, ChinaKey Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, ChinaKey Laboratory for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, ChinaTo improve the heat resistance of titanium alloys, the effects of Y content on the precipitation behavior, oxidation resistance and high-temperature mechanical properties of as-cast Ti-5Al-2.75Sn-3Zr-1.5Mo-0.45Si-1W-2Nb-xY (x = 0.1, 0.2, 0.4) alloys were systematically investigated. The microstructures, phase evolution and oxidation scales were characterized by XRD, Laser Raman, XPS, SEM and TEM. The properties were studied by cyclic oxidation as well as room- and high-temperature tensile testing. The results show that the microstructures of the alloys are of the widmanstätten structure with typical basket weave features, and the prior β grain size and α lamellar spacing are refined with the increase of Y content. The precipitates in the alloys mainly include Y<sub>2</sub>O<sub>3</sub> and (TiZr)<sub>6</sub>Si<sub>3</sub> silicide phases. The Y<sub>2</sub>O<sub>3</sub> phase has specific orientation relationships with the α-Ti phase: (002)<sub>Y<sub>2</sub>O<sub>3</sub></sub> // (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>20)<sub>α-Ti</sub>, [110]<sub>Y<sub>2</sub>O<sub>3</sub></sub> // [<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>4</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>401]<sub>α-Ti</sub>. (TiZr)<sub>6</sub>Si<sub>3</sub> has an orientation relationship with the β-Ti phase: (02<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>2</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>)<sub>(TiZr)<sub>6</sub>Si<sub>3</sub></sub> // (011)<sub>β-Ti</sub>, [<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>2<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>6]<sub>(TiZr)<sub>6</sub>Si<sub>3</sub></sub> // [04<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover><mn>4</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>]<sub>β-Ti</sub>. The 0.1 wt.% Y composition alloy has the best high-temperature oxidation resistance at different temperatures. The oxidation behaviors of the alloys follow the linear-parabolic law, and the oxidation products of the alloys are composed of rutile-TiO<sub>2</sub>, anatase-TiO<sub>2</sub>, Y<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub>. The room-temperature and 700 °C UTS of the alloys decreases first and then increases with the increase of Y content; the 0.1 wt.% Y composition alloy has the best room-temperature mechanical properties with a UTS of 1012 MPa and elongation of 1.0%. The 700 °C UTS and elongation of the alloy with 0.1 wt.% Y is 694 MPa and 9.8%, showing an optimal comprehensive performance. The UTS and elongation of the alloys at 750 °C increase first and then decrease with the increase of Y content. The optimal UTS and elongation of the alloy is 556 MPa and 10.1% obtained in 0.2 wt.% Y composition alloy. The cleavage and dimples fractures are the primary fracture mode for the room- and high-temperature tensile fracture, respectively.https://www.mdpi.com/1996-1944/16/13/4784high-temperature titanium alloyY contentprecipitated phasesoxidation behaviormechanical property
spellingShingle Jiafeng Shen
Binguo Fu
Yufeng Wang
Tianshun Dong
Jingkun Li
Guolu Li
Jinhai Liu
Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys
Materials
high-temperature titanium alloy
Y content
precipitated phases
oxidation behavior
mechanical property
title Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys
title_full Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys
title_fullStr Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys
title_full_unstemmed Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys
title_short Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys
title_sort effect of y content on precipitation behavior oxidation and mechanical properties of as cast high temperature titanium alloys
topic high-temperature titanium alloy
Y content
precipitated phases
oxidation behavior
mechanical property
url https://www.mdpi.com/1996-1944/16/13/4784
work_keys_str_mv AT jiafengshen effectofycontentonprecipitationbehavioroxidationandmechanicalpropertiesofascasthightemperaturetitaniumalloys
AT binguofu effectofycontentonprecipitationbehavioroxidationandmechanicalpropertiesofascasthightemperaturetitaniumalloys
AT yufengwang effectofycontentonprecipitationbehavioroxidationandmechanicalpropertiesofascasthightemperaturetitaniumalloys
AT tianshundong effectofycontentonprecipitationbehavioroxidationandmechanicalpropertiesofascasthightemperaturetitaniumalloys
AT jingkunli effectofycontentonprecipitationbehavioroxidationandmechanicalpropertiesofascasthightemperaturetitaniumalloys
AT guoluli effectofycontentonprecipitationbehavioroxidationandmechanicalpropertiesofascasthightemperaturetitaniumalloys
AT jinhailiu effectofycontentonprecipitationbehavioroxidationandmechanicalpropertiesofascasthightemperaturetitaniumalloys