GLPS: A Geohash-Based Location Privacy Protection Scheme

With the development of mobile applications, location-based services (LBSs) have been incorporated into people’s daily lives and created huge commercial revenues. However, when using these services, people also face the risk of personal privacy breaches due to the release of location and query conte...

Full description

Bibliographic Details
Main Authors: Bin Liu, Chunyong Zhang, Liangwei Yao, Yang Xin
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/12/1569
Description
Summary:With the development of mobile applications, location-based services (LBSs) have been incorporated into people’s daily lives and created huge commercial revenues. However, when using these services, people also face the risk of personal privacy breaches due to the release of location and query content. Many existing location privacy protection schemes with centralized architectures assume that anonymous servers are secure and trustworthy. This assumption is difficult to guarantee in real applications. To solve the problem of relying on the security and trustworthiness of anonymous servers, we propose a Geohash-based location privacy protection scheme for snapshot queries. It is named <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>L</mi><mi>P</mi><mi>S</mi></mrow></semantics></math></inline-formula>. On the user side, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>L</mi><mi>P</mi><mi>S</mi></mrow></semantics></math></inline-formula> uses Geohash encoding technology to convert the user’s location coordinates into a string code representing a rectangular geographic area. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>L</mi><mi>P</mi><mi>S</mi></mrow></semantics></math></inline-formula> uses the code as the privacy location to send check-ins and queries to the anonymous server and to avoid the anonymous server gaining the user’s exact location. On the anonymous server side, the scheme takes advantage of Geohash codes’ geospatial gridding capabilities and GL-Tree’s effective location retrieval performance to generate a <i>k</i>-anonymous query set based on user-defined minimum and maximum hidden cells, making it harder for adversaries to pinpoint the user’s location. We experimentally tested the performance of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>L</mi><mi>P</mi><mi>S</mi></mrow></semantics></math></inline-formula> and compared it with three schemes: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>a</mi><mi>s</mi><mi>p</mi><mi>e</mi><mi>r</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>C</mi><mi>a</mi><mi>s</mi><mi>p</mi><mi>e</mi><mi>r</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>L</mi><mi>S</mi></mrow></semantics></math></inline-formula>. The experimental results and analyses demonstrate that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>L</mi><mi>P</mi><mi>S</mi></mrow></semantics></math></inline-formula> has a good performance and privacy protection capability, which resolves the reliance on the security and trustworthiness of anonymous servers. It also resists attacks involving background knowledge, regional centers, homogenization, distribution density, and identity association.
ISSN:1099-4300