Unraveling the mechanisms and implications of a stronger mid-Pliocene Atlantic Meridional Overturning Circulation (AMOC) in PlioMIP2
<p>The mid-Pliocene warm period (3.264–3.025 Ma) is the most recent geological period in which the atmospheric CO<span class="inline-formula"><sub>2</sub></span> concentration was approximately equal to the concentration we measure today (ca. 400 ppm). Sea sur...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2023-01-01
|
Series: | Climate of the Past |
Online Access: | https://cp.copernicus.org/articles/19/61/2023/cp-19-61-2023.pdf |
_version_ | 1828068504930091008 |
---|---|
author | J. E. Weiffenbach M. L. J. Baatsen H. A. Dijkstra H. A. Dijkstra A. S. von der Heydt A. S. von der Heydt A. Abe-Ouchi E. C. Brady W.-L. Chan D. Chandan M. A. Chandler C. Contoux R. Feng C. Guo Z. Han Z. Han A. M. Haywood Q. Li X. Li G. Lohmann G. Lohmann D. J. Lunt K. H. Nisancioglu K. H. Nisancioglu B. L. Otto-Bliesner W. R. Peltier G. Ramstein L. E. Sohl C. Stepanek N. Tan N. Tan J. C. Tindall C. J. R. Williams C. J. R. Williams Q. Zhang Z. Zhang Z. Zhang |
author_facet | J. E. Weiffenbach M. L. J. Baatsen H. A. Dijkstra H. A. Dijkstra A. S. von der Heydt A. S. von der Heydt A. Abe-Ouchi E. C. Brady W.-L. Chan D. Chandan M. A. Chandler C. Contoux R. Feng C. Guo Z. Han Z. Han A. M. Haywood Q. Li X. Li G. Lohmann G. Lohmann D. J. Lunt K. H. Nisancioglu K. H. Nisancioglu B. L. Otto-Bliesner W. R. Peltier G. Ramstein L. E. Sohl C. Stepanek N. Tan N. Tan J. C. Tindall C. J. R. Williams C. J. R. Williams Q. Zhang Z. Zhang Z. Zhang |
author_sort | J. E. Weiffenbach |
collection | DOAJ |
description | <p>The mid-Pliocene warm period (3.264–3.025 Ma) is the most recent geological period in which the atmospheric CO<span class="inline-formula"><sub>2</sub></span> concentration was approximately equal to the concentration we measure today (ca. 400 ppm). Sea surface temperature (SST) proxies indicate above-average warming over the North Atlantic in the mid-Pliocene with respect to the pre-industrial period, which may be linked to an intensified Atlantic Meridional Overturning Circulation (AMOC). Earlier results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) show that the ensemble simulates a stronger AMOC in the mid-Pliocene than in the pre-industrial. However, no consistent relationship between the stronger mid-Pliocene AMOC and either the Atlantic northward ocean heat transport (OHT) or average North Atlantic SSTs has been found. In this study, we look further into the drivers and consequences of a stronger AMOC in mid-Pliocene compared to pre-industrial simulations in PlioMIP2. We find that all model simulations with a closed Bering Strait and Canadian Archipelago show reduced freshwater transport from the Arctic Ocean into the North Atlantic. This contributes to an increase in salinity in the subpolar North Atlantic and Labrador Sea that can be linked to the stronger AMOC in the mid-Pliocene. To investigate the dynamics behind the ensemble's variable response of the total Atlantic OHT to the stronger AMOC, we separate the Atlantic OHT into two components associated with either the overturning circulation or the wind-driven gyre circulation. While the ensemble mean of the overturning component is increased significantly in magnitude in the mid-Pliocene, it is partly compensated by a reduction in the gyre component in the northern subtropical gyre region. This indicates that the lack of relationship between the total OHT and AMOC is due to changes in OHT by the subtropical gyre. The overturning and gyre components should therefore be considered separately to gain a more complete understanding of the OHT response to a stronger mid-Pliocene AMOC. In addition, we show that the AMOC exerts a stronger influence on North Atlantic SSTs in the mid-Pliocene than in the pre-industrial, providing a possible explanation for the improved agreement of the PlioMIP2 ensemble mean SSTs with reconstructions in the North Atlantic.</p> |
first_indexed | 2024-04-11T00:03:59Z |
format | Article |
id | doaj.art-0a22b6523a274734a40b7ae5cbd1e78a |
institution | Directory Open Access Journal |
issn | 1814-9324 1814-9332 |
language | English |
last_indexed | 2024-04-11T00:03:59Z |
publishDate | 2023-01-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Climate of the Past |
spelling | doaj.art-0a22b6523a274734a40b7ae5cbd1e78a2023-01-09T12:22:13ZengCopernicus PublicationsClimate of the Past1814-93241814-93322023-01-0119618510.5194/cp-19-61-2023Unraveling the mechanisms and implications of a stronger mid-Pliocene Atlantic Meridional Overturning Circulation (AMOC) in PlioMIP2J. E. Weiffenbach0M. L. J. Baatsen1H. A. Dijkstra2H. A. Dijkstra3A. S. von der Heydt4A. S. von der Heydt5A. Abe-Ouchi6E. C. Brady7W.-L. Chan8D. Chandan9M. A. Chandler10C. Contoux11R. Feng12C. Guo13Z. Han14Z. Han15A. M. Haywood16Q. Li17X. Li18G. Lohmann19G. Lohmann20D. J. Lunt21K. H. Nisancioglu22K. H. Nisancioglu23B. L. Otto-Bliesner24W. R. Peltier25G. Ramstein26L. E. Sohl27C. Stepanek28N. Tan29N. Tan30J. C. Tindall31C. J. R. Williams32C. J. R. Williams33Q. Zhang34Z. Zhang35Z. Zhang36Institute for Marine and Atmospheric Research Utrecht (IMAU), Department of Physics, Utrecht University, 3584 CC Utrecht, the NetherlandsInstitute for Marine and Atmospheric Research Utrecht (IMAU), Department of Physics, Utrecht University, 3584 CC Utrecht, the NetherlandsInstitute for Marine and Atmospheric Research Utrecht (IMAU), Department of Physics, Utrecht University, 3584 CC Utrecht, the NetherlandsCentre for Complex Systems Science, Utrecht University, 3584 CE Utrecht, the NetherlandsInstitute for Marine and Atmospheric Research Utrecht (IMAU), Department of Physics, Utrecht University, 3584 CC Utrecht, the NetherlandsCentre for Complex Systems Science, Utrecht University, 3584 CE Utrecht, the NetherlandsAtmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, JapanClimate and Global Dynamics Laboratory, National Center for Atmospheric Research (NCAR), Boulder, CO 80305, USAAtmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, JapanDepartment of Physics, University of Toronto, Toronto, M5S 1A7, CanadaCCSR/GISS, Columbia University, New York, NY 10025, USALaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceDepartment of Geosciences, College of Liberal Arts and Sciences, University of Connecticut, Storrs, CT 06033, USANORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, 5007 Bergen, NorwayCollege of Oceanography, Hohai University, Nanjing, ChinaDepartment of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, 10691, SwedenSchool of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, West Yorkshire, LS2 9JT, UKNational Supercomputer Centre, Linköping University, Linköping, 58183, SwedenDepartment of Atmospheric Science, School of Environmental Studies, China University of Geoscience, Wuhan 430074, ChinaAlfred-Wegener-Institut – Helmholtz-Zentrum für Polar und Meeresforschung (AWI), 27570 Bremerhaven, GermanyDepartment of Environmental Physics, MARUM, University of Bremen, 28359 Bremen, GermanySchool of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UKBjerknes Centre for Climate Research, Department of Earth Science, University of Bergen, 5007 Bergen, NorwayCentre for Earth Evolution and Dynamics, University of Oslo, 0315 Oslo, NorwayClimate and Global Dynamics Laboratory, National Center for Atmospheric Research (NCAR), Boulder, CO 80305, USADepartment of Physics, University of Toronto, Toronto, M5S 1A7, CanadaLaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceCCSR/GISS, Columbia University, New York, NY 10025, USAAlfred-Wegener-Institut – Helmholtz-Zentrum für Polar und Meeresforschung (AWI), 27570 Bremerhaven, GermanyLaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceKey Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, ChinaSchool of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, West Yorkshire, LS2 9JT, UKSchool of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UKNCAS-Climate, Department of Meteorology, University of Reading, RG6 6ET Reading, UKDepartment of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, 10691, SwedenNORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, 5007 Bergen, NorwayDepartment of Atmospheric Science, School of Environmental Studies, China University of Geoscience, Wuhan 430074, China<p>The mid-Pliocene warm period (3.264–3.025 Ma) is the most recent geological period in which the atmospheric CO<span class="inline-formula"><sub>2</sub></span> concentration was approximately equal to the concentration we measure today (ca. 400 ppm). Sea surface temperature (SST) proxies indicate above-average warming over the North Atlantic in the mid-Pliocene with respect to the pre-industrial period, which may be linked to an intensified Atlantic Meridional Overturning Circulation (AMOC). Earlier results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) show that the ensemble simulates a stronger AMOC in the mid-Pliocene than in the pre-industrial. However, no consistent relationship between the stronger mid-Pliocene AMOC and either the Atlantic northward ocean heat transport (OHT) or average North Atlantic SSTs has been found. In this study, we look further into the drivers and consequences of a stronger AMOC in mid-Pliocene compared to pre-industrial simulations in PlioMIP2. We find that all model simulations with a closed Bering Strait and Canadian Archipelago show reduced freshwater transport from the Arctic Ocean into the North Atlantic. This contributes to an increase in salinity in the subpolar North Atlantic and Labrador Sea that can be linked to the stronger AMOC in the mid-Pliocene. To investigate the dynamics behind the ensemble's variable response of the total Atlantic OHT to the stronger AMOC, we separate the Atlantic OHT into two components associated with either the overturning circulation or the wind-driven gyre circulation. While the ensemble mean of the overturning component is increased significantly in magnitude in the mid-Pliocene, it is partly compensated by a reduction in the gyre component in the northern subtropical gyre region. This indicates that the lack of relationship between the total OHT and AMOC is due to changes in OHT by the subtropical gyre. The overturning and gyre components should therefore be considered separately to gain a more complete understanding of the OHT response to a stronger mid-Pliocene AMOC. In addition, we show that the AMOC exerts a stronger influence on North Atlantic SSTs in the mid-Pliocene than in the pre-industrial, providing a possible explanation for the improved agreement of the PlioMIP2 ensemble mean SSTs with reconstructions in the North Atlantic.</p>https://cp.copernicus.org/articles/19/61/2023/cp-19-61-2023.pdf |
spellingShingle | J. E. Weiffenbach M. L. J. Baatsen H. A. Dijkstra H. A. Dijkstra A. S. von der Heydt A. S. von der Heydt A. Abe-Ouchi E. C. Brady W.-L. Chan D. Chandan M. A. Chandler C. Contoux R. Feng C. Guo Z. Han Z. Han A. M. Haywood Q. Li X. Li G. Lohmann G. Lohmann D. J. Lunt K. H. Nisancioglu K. H. Nisancioglu B. L. Otto-Bliesner W. R. Peltier G. Ramstein L. E. Sohl C. Stepanek N. Tan N. Tan J. C. Tindall C. J. R. Williams C. J. R. Williams Q. Zhang Z. Zhang Z. Zhang Unraveling the mechanisms and implications of a stronger mid-Pliocene Atlantic Meridional Overturning Circulation (AMOC) in PlioMIP2 Climate of the Past |
title | Unraveling the mechanisms and implications of a stronger mid-Pliocene Atlantic Meridional Overturning Circulation (AMOC) in PlioMIP2 |
title_full | Unraveling the mechanisms and implications of a stronger mid-Pliocene Atlantic Meridional Overturning Circulation (AMOC) in PlioMIP2 |
title_fullStr | Unraveling the mechanisms and implications of a stronger mid-Pliocene Atlantic Meridional Overturning Circulation (AMOC) in PlioMIP2 |
title_full_unstemmed | Unraveling the mechanisms and implications of a stronger mid-Pliocene Atlantic Meridional Overturning Circulation (AMOC) in PlioMIP2 |
title_short | Unraveling the mechanisms and implications of a stronger mid-Pliocene Atlantic Meridional Overturning Circulation (AMOC) in PlioMIP2 |
title_sort | unraveling the mechanisms and implications of a stronger mid pliocene atlantic meridional overturning circulation amoc in pliomip2 |
url | https://cp.copernicus.org/articles/19/61/2023/cp-19-61-2023.pdf |
work_keys_str_mv | AT jeweiffenbach unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT mljbaatsen unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT hadijkstra unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT hadijkstra unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT asvonderheydt unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT asvonderheydt unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT aabeouchi unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT ecbrady unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT wlchan unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT dchandan unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT machandler unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT ccontoux unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT rfeng unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT cguo unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT zhan unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT zhan unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT amhaywood unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT qli unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT xli unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT glohmann unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT glohmann unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT djlunt unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT khnisancioglu unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT khnisancioglu unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT blottobliesner unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT wrpeltier unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT gramstein unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT lesohl unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT cstepanek unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT ntan unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT ntan unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT jctindall unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT cjrwilliams unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT cjrwilliams unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT qzhang unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT zzhang unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 AT zzhang unravelingthemechanismsandimplicationsofastrongermidplioceneatlanticmeridionaloverturningcirculationamocinpliomip2 |