Reduction Formulas for Generalized Hypergeometric Series Associated with New Sequences and Applications

In this paper, by introducing two sequences of <i>new</i> numbers and their derivatives, which are closely related to the Stirling numbers of the first kind, and choosing to employ six known generalized Kummer’s summation formulas for <inline-formula><math xmlns="http://www...

Full description

Bibliographic Details
Main Authors: Junesang Choi, Mohd Idris Qureshi, Aarif Hussain Bhat, Javid Majid
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/5/4/150
_version_ 1827672331974082560
author Junesang Choi
Mohd Idris Qureshi
Aarif Hussain Bhat
Javid Majid
author_facet Junesang Choi
Mohd Idris Qureshi
Aarif Hussain Bhat
Javid Majid
author_sort Junesang Choi
collection DOAJ
description In this paper, by introducing two sequences of <i>new</i> numbers and their derivatives, which are closely related to the Stirling numbers of the first kind, and choosing to employ six known generalized Kummer’s summation formulas for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mn>2</mn></msub><msub><mi>F</mi><mn>1</mn></msub><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mn>2</mn></msub><msub><mi>F</mi><mn>1</mn></msub><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, we establish six classes of generalized summation formulas for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mrow><mi>p</mi><mo>+</mo><mn>2</mn></mrow></msub><msub><mi>F</mi><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula> with arguments <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula> for any positive integer <i>p</i>. Next, by differentiating both sides of six chosen formulas presented here with respect to a specific parameter, among numerous ones, we demonstrate six identities in connection with finite sums of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mn>4</mn></msub><msub><mi>F</mi><mn>3</mn></msub><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mn>4</mn></msub><msub><mi>F</mi><mn>3</mn></msub><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Further, we choose to give simple particular identities of some formulas presented here. We conclude this paper by highlighting a potential use of the newly presented numbers and posing some problems.
first_indexed 2024-03-10T04:05:54Z
format Article
id doaj.art-0a298525b3734c808956fb823e626403
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-10T04:05:54Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-0a298525b3734c808956fb823e6264032023-11-23T08:22:57ZengMDPI AGFractal and Fractional2504-31102021-10-015415010.3390/fractalfract5040150Reduction Formulas for Generalized Hypergeometric Series Associated with New Sequences and ApplicationsJunesang Choi0Mohd Idris Qureshi1Aarif Hussain Bhat2Javid Majid3Department of Mathematics, Dongguk University, Gyeongju 38066, KoreaDepartment of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia (A Central University), New Delhi 110025, IndiaDepartment of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia (A Central University), New Delhi 110025, IndiaDepartment of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia (A Central University), New Delhi 110025, IndiaIn this paper, by introducing two sequences of <i>new</i> numbers and their derivatives, which are closely related to the Stirling numbers of the first kind, and choosing to employ six known generalized Kummer’s summation formulas for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mn>2</mn></msub><msub><mi>F</mi><mn>1</mn></msub><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mn>2</mn></msub><msub><mi>F</mi><mn>1</mn></msub><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, we establish six classes of generalized summation formulas for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mrow><mi>p</mi><mo>+</mo><mn>2</mn></mrow></msub><msub><mi>F</mi><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula> with arguments <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula> for any positive integer <i>p</i>. Next, by differentiating both sides of six chosen formulas presented here with respect to a specific parameter, among numerous ones, we demonstrate six identities in connection with finite sums of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mn>4</mn></msub><msub><mi>F</mi><mn>3</mn></msub><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mn>4</mn></msub><msub><mi>F</mi><mn>3</mn></msub><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Further, we choose to give simple particular identities of some formulas presented here. We conclude this paper by highlighting a potential use of the newly presented numbers and posing some problems.https://www.mdpi.com/2504-3110/5/4/150Gamma functionPsi functionPochhammer symbolhypergeometric function <sub>2</sub><i>F</i><sub>1</sub>generalized hypergeometric functions <sub><i>t</i></sub><i>F</i><i><sub>u</sub></i>Gauss’s summation theorem for <sub>2</sub><i>F</i><sub>1</sub>(1)
spellingShingle Junesang Choi
Mohd Idris Qureshi
Aarif Hussain Bhat
Javid Majid
Reduction Formulas for Generalized Hypergeometric Series Associated with New Sequences and Applications
Fractal and Fractional
Gamma function
Psi function
Pochhammer symbol
hypergeometric function <sub>2</sub><i>F</i><sub>1</sub>
generalized hypergeometric functions <sub><i>t</i></sub><i>F</i><i><sub>u</sub></i>
Gauss’s summation theorem for <sub>2</sub><i>F</i><sub>1</sub>(1)
title Reduction Formulas for Generalized Hypergeometric Series Associated with New Sequences and Applications
title_full Reduction Formulas for Generalized Hypergeometric Series Associated with New Sequences and Applications
title_fullStr Reduction Formulas for Generalized Hypergeometric Series Associated with New Sequences and Applications
title_full_unstemmed Reduction Formulas for Generalized Hypergeometric Series Associated with New Sequences and Applications
title_short Reduction Formulas for Generalized Hypergeometric Series Associated with New Sequences and Applications
title_sort reduction formulas for generalized hypergeometric series associated with new sequences and applications
topic Gamma function
Psi function
Pochhammer symbol
hypergeometric function <sub>2</sub><i>F</i><sub>1</sub>
generalized hypergeometric functions <sub><i>t</i></sub><i>F</i><i><sub>u</sub></i>
Gauss’s summation theorem for <sub>2</sub><i>F</i><sub>1</sub>(1)
url https://www.mdpi.com/2504-3110/5/4/150
work_keys_str_mv AT junesangchoi reductionformulasforgeneralizedhypergeometricseriesassociatedwithnewsequencesandapplications
AT mohdidrisqureshi reductionformulasforgeneralizedhypergeometricseriesassociatedwithnewsequencesandapplications
AT aarifhussainbhat reductionformulasforgeneralizedhypergeometricseriesassociatedwithnewsequencesandapplications
AT javidmajid reductionformulasforgeneralizedhypergeometricseriesassociatedwithnewsequencesandapplications