Location Accuracy Improvement of Long-range Lightning Detection Network In China by Compensating Ground Wave Propagation Delay

Very low frequency (VLF) electromagnetic waves distort along the long propagation path, and that causes the arrival time of the signals measured by the long-range lightning system to be delayed. In this paper, based on the propagation correction method by compensating the peak time delay of the grou...

Full description

Bibliographic Details
Main Authors: Junchao Zhang, Jiahao Zhou, Jie Li, Jiaying Gu, Qilin Zhang, Bingzhe Dai, Yao Wang, Jialei Wang, Yuqing Zhong, Qingda Li
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/14/3397
Description
Summary:Very low frequency (VLF) electromagnetic waves distort along the long propagation path, and that causes the arrival time of the signals measured by the long-range lightning system to be delayed. In this paper, based on the propagation correction method by compensating the peak time delay of the ground wave, the location accuracy of the long-range lightning detection network in China is greatly improved. The improvement of the relative location accuracy and location offsets are evaluated by comparing with the Advanced Direction Time Lightning Detection System (ADTD) datasets. It shows that the mean relative accuracy is improved from 7.74 km to 4.32 km, and the median relative accuracy is improved from 7.28 km to 2.46 km. The mean westwards offset of the total lightning location data drops from 2.05 km to 0.93 km, and the mean southwards offset drops from 1.19 km to 0.63 km. In addition, it is found that the location accuracy will be greatly improved if the observation site affected by the terrain is removed. The mean relative location accuracy is further improved to 4.11 km and the median to 2.32 km.
ISSN:2072-4292