The relativistic center of mass in field theory with spin

Abstract In order to unravel the origin of the nucleon spin, one has to study in detail the question of orbital angular momentum, and in particular the reference point about which it is defined. With this in mind, we review the concept of relativistic center of mass, generalize the discussion to the...

Full description

Bibliographic Details
Main Author: Cédric Lorcé
Format: Article
Language:English
Published: SpringerOpen 2018-09-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-018-6249-3
Description
Summary:Abstract In order to unravel the origin of the nucleon spin, one has to study in detail the question of orbital angular momentum, and in particular the reference point about which it is defined. With this in mind, we review the concept of relativistic center of mass, generalize the discussion to the case of asymmetric energy-momentum tensors, and establish the link with the light-front formalism. We find that the p-wave in the Dirac plane-wave solutions arises from a relativistic quantum-mechanical effect which forces the canonical reference point to depend on the observer. This explains why longitudinal spin is much simpler to study than transverse spin. It is also the reason behind the observation of induced shifts and distortions in the parton distributions defined within the light-front formalism.
ISSN:1434-6044
1434-6052