Algebraic coherent confluence and higher globular Kleene algebras
We extend the formalisation of confluence results in Kleene algebras to a formalisation of coherent confluence proofs. For this, we introduce the structure of higher globular Kleene algebra, a higher-dimensional generalisation of modal and concurrent Kleene algebra. We calculate a coherent Church-Ro...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Logical Methods in Computer Science e.V.
2022-11-01
|
Series: | Logical Methods in Computer Science |
Subjects: | |
Online Access: | https://lmcs.episciences.org/6743/pdf |
_version_ | 1797268470034857984 |
---|---|
author | Cameron Calk Eric Goubault Philippe Malbos Georg Struth |
author_facet | Cameron Calk Eric Goubault Philippe Malbos Georg Struth |
author_sort | Cameron Calk |
collection | DOAJ |
description | We extend the formalisation of confluence results in Kleene algebras to a
formalisation of coherent confluence proofs. For this, we introduce the
structure of higher globular Kleene algebra, a higher-dimensional
generalisation of modal and concurrent Kleene algebra. We calculate a coherent
Church-Rosser theorem and a coherent Newman's lemma in higher Kleene algebras
by equational reasoning. We instantiate these results in the context of higher
rewriting systems modelled by polygraphs. |
first_indexed | 2024-04-25T01:32:59Z |
format | Article |
id | doaj.art-0a53cf6d1ce14baa98c252946e41df48 |
institution | Directory Open Access Journal |
issn | 1860-5974 |
language | English |
last_indexed | 2024-04-25T01:32:59Z |
publishDate | 2022-11-01 |
publisher | Logical Methods in Computer Science e.V. |
record_format | Article |
series | Logical Methods in Computer Science |
spelling | doaj.art-0a53cf6d1ce14baa98c252946e41df482024-03-08T10:40:29ZengLogical Methods in Computer Science e.V.Logical Methods in Computer Science1860-59742022-11-01Volume 18, Issue 410.46298/lmcs-18(4:9)20226743Algebraic coherent confluence and higher globular Kleene algebrasCameron CalkEric GoubaultPhilippe MalbosGeorg StruthWe extend the formalisation of confluence results in Kleene algebras to a formalisation of coherent confluence proofs. For this, we introduce the structure of higher globular Kleene algebra, a higher-dimensional generalisation of modal and concurrent Kleene algebra. We calculate a coherent Church-Rosser theorem and a coherent Newman's lemma in higher Kleene algebras by equational reasoning. We instantiate these results in the context of higher rewriting systems modelled by polygraphs.https://lmcs.episciences.org/6743/pdfcomputer science - logic in computer sciencemathematics - category theory |
spellingShingle | Cameron Calk Eric Goubault Philippe Malbos Georg Struth Algebraic coherent confluence and higher globular Kleene algebras Logical Methods in Computer Science computer science - logic in computer science mathematics - category theory |
title | Algebraic coherent confluence and higher globular Kleene algebras |
title_full | Algebraic coherent confluence and higher globular Kleene algebras |
title_fullStr | Algebraic coherent confluence and higher globular Kleene algebras |
title_full_unstemmed | Algebraic coherent confluence and higher globular Kleene algebras |
title_short | Algebraic coherent confluence and higher globular Kleene algebras |
title_sort | algebraic coherent confluence and higher globular kleene algebras |
topic | computer science - logic in computer science mathematics - category theory |
url | https://lmcs.episciences.org/6743/pdf |
work_keys_str_mv | AT cameroncalk algebraiccoherentconfluenceandhigherglobularkleenealgebras AT ericgoubault algebraiccoherentconfluenceandhigherglobularkleenealgebras AT philippemalbos algebraiccoherentconfluenceandhigherglobularkleenealgebras AT georgstruth algebraiccoherentconfluenceandhigherglobularkleenealgebras |