Algebraic coherent confluence and higher globular Kleene algebras

We extend the formalisation of confluence results in Kleene algebras to a formalisation of coherent confluence proofs. For this, we introduce the structure of higher globular Kleene algebra, a higher-dimensional generalisation of modal and concurrent Kleene algebra. We calculate a coherent Church-Ro...

Full description

Bibliographic Details
Main Authors: Cameron Calk, Eric Goubault, Philippe Malbos, Georg Struth
Format: Article
Language:English
Published: Logical Methods in Computer Science e.V. 2022-11-01
Series:Logical Methods in Computer Science
Subjects:
Online Access:https://lmcs.episciences.org/6743/pdf
_version_ 1797268470034857984
author Cameron Calk
Eric Goubault
Philippe Malbos
Georg Struth
author_facet Cameron Calk
Eric Goubault
Philippe Malbos
Georg Struth
author_sort Cameron Calk
collection DOAJ
description We extend the formalisation of confluence results in Kleene algebras to a formalisation of coherent confluence proofs. For this, we introduce the structure of higher globular Kleene algebra, a higher-dimensional generalisation of modal and concurrent Kleene algebra. We calculate a coherent Church-Rosser theorem and a coherent Newman's lemma in higher Kleene algebras by equational reasoning. We instantiate these results in the context of higher rewriting systems modelled by polygraphs.
first_indexed 2024-04-25T01:32:59Z
format Article
id doaj.art-0a53cf6d1ce14baa98c252946e41df48
institution Directory Open Access Journal
issn 1860-5974
language English
last_indexed 2024-04-25T01:32:59Z
publishDate 2022-11-01
publisher Logical Methods in Computer Science e.V.
record_format Article
series Logical Methods in Computer Science
spelling doaj.art-0a53cf6d1ce14baa98c252946e41df482024-03-08T10:40:29ZengLogical Methods in Computer Science e.V.Logical Methods in Computer Science1860-59742022-11-01Volume 18, Issue 410.46298/lmcs-18(4:9)20226743Algebraic coherent confluence and higher globular Kleene algebrasCameron CalkEric GoubaultPhilippe MalbosGeorg StruthWe extend the formalisation of confluence results in Kleene algebras to a formalisation of coherent confluence proofs. For this, we introduce the structure of higher globular Kleene algebra, a higher-dimensional generalisation of modal and concurrent Kleene algebra. We calculate a coherent Church-Rosser theorem and a coherent Newman's lemma in higher Kleene algebras by equational reasoning. We instantiate these results in the context of higher rewriting systems modelled by polygraphs.https://lmcs.episciences.org/6743/pdfcomputer science - logic in computer sciencemathematics - category theory
spellingShingle Cameron Calk
Eric Goubault
Philippe Malbos
Georg Struth
Algebraic coherent confluence and higher globular Kleene algebras
Logical Methods in Computer Science
computer science - logic in computer science
mathematics - category theory
title Algebraic coherent confluence and higher globular Kleene algebras
title_full Algebraic coherent confluence and higher globular Kleene algebras
title_fullStr Algebraic coherent confluence and higher globular Kleene algebras
title_full_unstemmed Algebraic coherent confluence and higher globular Kleene algebras
title_short Algebraic coherent confluence and higher globular Kleene algebras
title_sort algebraic coherent confluence and higher globular kleene algebras
topic computer science - logic in computer science
mathematics - category theory
url https://lmcs.episciences.org/6743/pdf
work_keys_str_mv AT cameroncalk algebraiccoherentconfluenceandhigherglobularkleenealgebras
AT ericgoubault algebraiccoherentconfluenceandhigherglobularkleenealgebras
AT philippemalbos algebraiccoherentconfluenceandhigherglobularkleenealgebras
AT georgstruth algebraiccoherentconfluenceandhigherglobularkleenealgebras