Análise de séries temporais em epidemiologia: uma introdução sobre os aspectos metodológicos Time series analysis in epidemiology: an introduction to methodological aspects
Este é um artigo introdutório sobre análise de séries temporais, onde se pretende apresentar, de maneira sumária, alguns modelos estatísticos mais utilizados em análise de séries temporais . Uma série temporal, também denominada série histórica, é uma seqüência de dados obtidos em intervalos regular...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Associação Brasileira de Pós-Graduação em Saúde Coletiva
2001-11-01
|
Series: | Revista Brasileira de Epidemiologia |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-790X2001000300002 |
Summary: | Este é um artigo introdutório sobre análise de séries temporais, onde se pretende apresentar, de maneira sumária, alguns modelos estatísticos mais utilizados em análise de séries temporais . Uma série temporal, também denominada série histórica, é uma seqüência de dados obtidos em intervalos regulares de tempo durante um período específico. Na análise de uma série temporal, primeiramente deseja-se modelar o fenômeno estudado para, a partir daí, descrever o comportamento da série, fazer estimativas e, por último, avaliar quais os fatores que influenciaram o comportamento da série, buscando definir relações de causa e efeito entre duas ou mais séries. Para tanto, há um conjunto de técnicas estatísticas disponíveis que dependem do modelo definido (ou estimado para a série), bem como do tipo de série analisada e do objetivo do trabalho. Para analise de tendências, podem se ajustar modelos de regressão polinomial baseados na série inteira ou em vizinhança de um determinado ponto. Isso também pode ser realizado com funções matemáticas. Define-se como um fenômeno sazonal aquele que ocorre regularmente em períodos fixos de tempo e, se existir sazonalidade dita determinística na série, podem-se utilizar modelos de regressão que incorporem funções do tipo seno ou cosseno à variável tempo. Os modelos auto-regressivos formam outra classe de modelos. Na análise do comportamento de uma série histórica livre de tendência e de sazonalidade podem ser utilizados modelos auto-regressivos (AR) ou que incorporem médias móveis (ARMA). Quando há tendência, utilizam-se os modelos auto-regressivos integrados de médias móveis (ARIMA) e, para incorporar o componente de sazonalidade, utilizam-se os modelos SARIMA. Por último há os modelos lineares generalizados. Neste grupo de modelos estatísticos, a variável resposta é um processo de contagem e as variáveis independentes são variáveis candidatas a explicar o comportamento da série ao longo do tempo. Estes modelos são indicados quando as variáveis em estudo não têm aderência à distribuição normal, principalmente pelo fato de serem processos de contagem . Estes modelos compõem um grupo de distribuições de probabilidades conhecido como família exponencial de distribuições que englobam diversas funções aditivas, como a regressão linear, de Poisson, logística, log-linear etc. Os modelos aditivos generalizados são uma extensão desta classe de modelos, nos quais cada variável independente analisada não entra no modelo com o seu valor, mas sim, adotando uma função não paramétrica de forma não especificada, estimada a partir de curvas de alisamento.<br>A time series, also denominated historical series, is a sequence of data obtained in regular intervals of time during a specific period. In the analysis of a time series, one first wants to model the study phenomenon and, from this, to describe the behaviour of the series, to make estimates, and, in the end, to evaluate the factors that may have influenced the behaviour of the series, with the objective of defining cause-effect relationships between two or more series. For this, there is a set of available statistical techniques which depend upon the defined model (or that estimated for the series), the type of the study series, and of the objective of the work. To analyse trends, it is possible to adjust polynomial regression models based on the whole series or on the neighbourhood of a specific point. This can also be done with mathematical functions. A seasonal phenomenon is defined as the one that occurs regularly in fixed periods of time and, if there is seasonality considered as deterministic in the series, one can use regression models which include functions like seno or cosseno to the variable time. In the analysis of the behaviour of a time series without trend and seasonality, the auto-regressive models (AR) or models which incorporate moving averages (ARMA) can be used. When trend is present, one can use auto-regressive models integrated with moving averages (ARIMA) and to incorporate the seasonality component the SARIMA models are used. The generalized linear models constitute another class of models. In this group of statistical models, the response variable is a counting process and the independent variables are those which are candidates to explain the behaviour of the series throughout the time. This class of models is indicated when the study variables do not follow the Normal distribution, mainly because they are counting processes. These models represent a group of probability distributions known as exponential family of distributions that incorporates many additive functions like the linear regression, Poisson, logistic, log-linear, etc. The generalized additive models are an extension of this class of models, in which each independent variable analysed does not enter in the model with its own value, but adopting a non parametric function in a non specific manner, which is estimated from smoothing curves. |
---|---|
ISSN: | 1415-790X 1980-5497 |