Cauchy problem for fractional $ {(p, q)} $-difference equations

In this research article, we deal with the global convergence of successive approximations (s.a) as well as the existence of solutions to a fractional $ {(p, q)} $-difference equation. Then, we discuss the existence result of the solutions of Caputo-type $ {(p, q)} $-difference fractional vector-ord...

Full description

Bibliographic Details
Main Authors: Abdelatif Boutiara, Mohamed Rhaima, Lassaad Mchiri, Abdellatif Ben Makhlouf
Format: Article
Language:English
Published: AIMS Press 2023-04-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2023805?viewType=HTML
_version_ 1797824617697509376
author Abdelatif Boutiara
Mohamed Rhaima
Lassaad Mchiri
Abdellatif Ben Makhlouf
author_facet Abdelatif Boutiara
Mohamed Rhaima
Lassaad Mchiri
Abdellatif Ben Makhlouf
author_sort Abdelatif Boutiara
collection DOAJ
description In this research article, we deal with the global convergence of successive approximations (s.a) as well as the existence of solutions to a fractional $ {(p, q)} $-difference equation. Then, we discuss the existence result of the solutions of Caputo-type $ {(p, q)} $-difference fractional vector-order equations in a Banach space. Also, we prove a theorem on the global convergence of successive approximations to the unique solution of our problem. Finally, the application of the main results is demonstrated by presenting numerical examples.
first_indexed 2024-03-13T10:41:39Z
format Article
id doaj.art-0a77ef41ecb2439cb3c25e2014e0dea9
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-03-13T10:41:39Z
publishDate 2023-04-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-0a77ef41ecb2439cb3c25e2014e0dea92023-05-18T02:37:29ZengAIMS PressAIMS Mathematics2473-69882023-04-0187157731578810.3934/math.2023805Cauchy problem for fractional $ {(p, q)} $-difference equationsAbdelatif Boutiara0Mohamed Rhaima1Lassaad Mchiri2Abdellatif Ben Makhlouf 31. Department of Mathematics and Computer Science, University of Ghardaia, BP 455 Ghardaia 47000, Algeria2. Department of Statistics and Operations Research, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia3. ENSIIE, University of Evry-Val-d'Essonne, 1 square de la Résistance 91025 Évry-Courcouronnes cedex, France4. Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, TunisiaIn this research article, we deal with the global convergence of successive approximations (s.a) as well as the existence of solutions to a fractional $ {(p, q)} $-difference equation. Then, we discuss the existence result of the solutions of Caputo-type $ {(p, q)} $-difference fractional vector-order equations in a Banach space. Also, we prove a theorem on the global convergence of successive approximations to the unique solution of our problem. Finally, the application of the main results is demonstrated by presenting numerical examples.https://www.aimspress.com/article/doi/10.3934/math.2023805?viewType=HTMLfractional $ {(pq)} $-calculusglobal convergencesuccessive approximationsmeasure of non-compactnessmeir-keeler condensing operators
spellingShingle Abdelatif Boutiara
Mohamed Rhaima
Lassaad Mchiri
Abdellatif Ben Makhlouf
Cauchy problem for fractional $ {(p, q)} $-difference equations
AIMS Mathematics
fractional $ {(p
q)} $-calculus
global convergence
successive approximations
measure of non-compactness
meir-keeler condensing operators
title Cauchy problem for fractional $ {(p, q)} $-difference equations
title_full Cauchy problem for fractional $ {(p, q)} $-difference equations
title_fullStr Cauchy problem for fractional $ {(p, q)} $-difference equations
title_full_unstemmed Cauchy problem for fractional $ {(p, q)} $-difference equations
title_short Cauchy problem for fractional $ {(p, q)} $-difference equations
title_sort cauchy problem for fractional p q difference equations
topic fractional $ {(p
q)} $-calculus
global convergence
successive approximations
measure of non-compactness
meir-keeler condensing operators
url https://www.aimspress.com/article/doi/10.3934/math.2023805?viewType=HTML
work_keys_str_mv AT abdelatifboutiara cauchyproblemforfractionalpqdifferenceequations
AT mohamedrhaima cauchyproblemforfractionalpqdifferenceequations
AT lassaadmchiri cauchyproblemforfractionalpqdifferenceequations
AT abdellatifbenmakhlouf cauchyproblemforfractionalpqdifferenceequations