On the Existence and Stability of Solutions for a Class of Fractional Riemann–Liouville Initial Value Problems

This article deals with a class of nonlinear fractional differential equations, with initial conditions, involving the Riemann–Liouville fractional derivative of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics>&...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Luís P. Castro, Anabela S. Silva
Aineistotyyppi: Artikkeli
Kieli:English
Julkaistu: MDPI AG 2023-01-01
Sarja:Mathematics
Aiheet:
Linkit:https://www.mdpi.com/2227-7390/11/2/297
Kuvaus
Yhteenveto:This article deals with a class of nonlinear fractional differential equations, with initial conditions, involving the Riemann–Liouville fractional derivative of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. The main objectives are to obtain conditions for the existence and uniqueness of solutions (within appropriate spaces), and to analyze the stabilities of Ulam–Hyers and Ulam–Hyers–Rassias types. In fact, different conditions for the existence and uniqueness of solutions are obtained based on the analysis of an associated class of fractional integral equations and distinct fixed-point arguments. Additionally, using a Bielecki-type metric and some additional contractive arguments, conditions are also obtained to guarantee Ulam–Hyers and Ulam–Hyers–Rassias stabilities for the problems under analysis. Examples are also included to illustrate the theory.
ISSN:2227-7390