Summary: | The relativistic effect on two-body discrete reaction inducing atomic recoil energy and the sequent damage energy is studied for 6Li, 56Fe, 184W, and 238U. The relativistic correction is within 1% if incident neutron energy is below 20 MeV. For incident neutron energy up to 200 MeV or even 800 MeV, the relativistic effect should be taken into account for treating two-body kinematics. The relativistic correction is about 0.05Ein/MeV% for neutron elastic scattering for nuclei from 56Fe to 238U and smaller for (n,α) and (n,t) reactions. Analyses on damage energy show that the relativistic corrections are generally within 2% for incident neutron below 200 MeV for nuclei lighter than 56Fe because of the “saturation” of damage energy. However, the current damage theory cannot be applied for Primary Knock-on Atom (PKA) energy higher than 24.9ARZR4/3 keV, which is 10 times lower than the maximum PKA energy for D+T fusion neutron elastic scattering of 6Li.
|