Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio cholerae

The α-pore-forming toxins (α-PFTs) from pathogenic bacteria damage host cell membranes by pore formation. We demonstrate a remarkable, hitherto unknown mechanism by an α-PFT protein from Vibrio cholerae. As part of the MakA/B/E tripartite toxin, MakA is involved in membrane pore formation similar to...

Full description

Bibliographic Details
Main Authors: Aftab Nadeem, Alexandra Berg, Hudson Pace, Athar Alam, Eric Toh, Jörgen Ådén, Nikola Zlatkov, Si Lhyam Myint, Karina Persson, Gerhard Gröbner, Anders Sjöstedt, Marta Bally, Jonas Barandun, Bernt Eric Uhlin, Sun Nyunt Wai
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2022-02-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/73439
_version_ 1811252858789560320
author Aftab Nadeem
Alexandra Berg
Hudson Pace
Athar Alam
Eric Toh
Jörgen Ådén
Nikola Zlatkov
Si Lhyam Myint
Karina Persson
Gerhard Gröbner
Anders Sjöstedt
Marta Bally
Jonas Barandun
Bernt Eric Uhlin
Sun Nyunt Wai
author_facet Aftab Nadeem
Alexandra Berg
Hudson Pace
Athar Alam
Eric Toh
Jörgen Ådén
Nikola Zlatkov
Si Lhyam Myint
Karina Persson
Gerhard Gröbner
Anders Sjöstedt
Marta Bally
Jonas Barandun
Bernt Eric Uhlin
Sun Nyunt Wai
author_sort Aftab Nadeem
collection DOAJ
description The α-pore-forming toxins (α-PFTs) from pathogenic bacteria damage host cell membranes by pore formation. We demonstrate a remarkable, hitherto unknown mechanism by an α-PFT protein from Vibrio cholerae. As part of the MakA/B/E tripartite toxin, MakA is involved in membrane pore formation similar to other α-PFTs. In contrast, MakA in isolation induces tube-like structures in acidic endosomal compartments of epithelial cells in vitro. The present study unravels the dynamics of tubular growth, which occurs in a pH-, lipid-, and concentration-dependent manner. Within acidified organelle lumens or when incubated with cells in acidic media, MakA forms oligomers and remodels membranes into high-curvature tubes leading to loss of membrane integrity. A 3.7 Å cryo-electron microscopy structure of MakA filaments reveals a unique protein-lipid superstructure. MakA forms a pinecone-like spiral with a central cavity and a thin annular lipid bilayer embedded between the MakA transmembrane helices in its active α-PFT conformation. Our study provides insights into a novel tubulation mechanism of an α-PFT protein and a new mode of action by a secreted bacterial toxin.
first_indexed 2024-04-12T16:41:01Z
format Article
id doaj.art-0a8dd6b4c732412e88ada5ed73ee8d45
institution Directory Open Access Journal
issn 2050-084X
language English
last_indexed 2024-04-12T16:41:01Z
publishDate 2022-02-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj.art-0a8dd6b4c732412e88ada5ed73ee8d452022-12-22T03:24:46ZengeLife Sciences Publications LtdeLife2050-084X2022-02-011110.7554/eLife.73439Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio choleraeAftab Nadeem0https://orcid.org/0000-0002-1439-6216Alexandra Berg1https://orcid.org/0000-0003-3609-2878Hudson Pace2https://orcid.org/0000-0001-5116-2577Athar Alam3https://orcid.org/0000-0001-8773-7598Eric Toh4https://orcid.org/0000-0002-0103-0696Jörgen Ådén5https://orcid.org/0000-0002-4480-1219Nikola Zlatkov6https://orcid.org/0000-0003-3318-9084Si Lhyam Myint7https://orcid.org/0000-0001-5384-3691Karina Persson8https://orcid.org/0000-0003-0807-0348Gerhard Gröbner9https://orcid.org/0000-0001-7380-8797Anders Sjöstedt10https://orcid.org/0000-0002-0768-8405Marta Bally11https://orcid.org/0000-0002-5865-8302Jonas Barandun12https://orcid.org/0000-0003-2971-8190Bernt Eric Uhlin13https://orcid.org/0000-0002-2991-8072Sun Nyunt Wai14https://orcid.org/0000-0003-4793-4671Department of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden; The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, SwedenDepartment of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden; The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden; Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, SwedenUmeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden; Department of Clinical Microbiology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, SwedenUmeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden; The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden; Department of Clinical Microbiology, Umeå University, Umeå, SwedenDepartment of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden; The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, SwedenUmeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden; Department of Chemistry, Umeå University, Umeå, SwedenDepartment of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden; The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, SwedenDepartment of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden; The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, SwedenUmeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden; Department of Chemistry, Umeå University, Umeå, SwedenUmeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden; Department of Chemistry, Umeå University, Umeå, SwedenUmeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden; The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden; Department of Clinical Microbiology, Umeå University, Umeå, SwedenUmeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden; Department of Clinical Microbiology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, SwedenDepartment of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden; The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, SwedenDepartment of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden; The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, SwedenDepartment of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden; The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, SwedenThe α-pore-forming toxins (α-PFTs) from pathogenic bacteria damage host cell membranes by pore formation. We demonstrate a remarkable, hitherto unknown mechanism by an α-PFT protein from Vibrio cholerae. As part of the MakA/B/E tripartite toxin, MakA is involved in membrane pore formation similar to other α-PFTs. In contrast, MakA in isolation induces tube-like structures in acidic endosomal compartments of epithelial cells in vitro. The present study unravels the dynamics of tubular growth, which occurs in a pH-, lipid-, and concentration-dependent manner. Within acidified organelle lumens or when incubated with cells in acidic media, MakA forms oligomers and remodels membranes into high-curvature tubes leading to loss of membrane integrity. A 3.7 Å cryo-electron microscopy structure of MakA filaments reveals a unique protein-lipid superstructure. MakA forms a pinecone-like spiral with a central cavity and a thin annular lipid bilayer embedded between the MakA transmembrane helices in its active α-PFT conformation. Our study provides insights into a novel tubulation mechanism of an α-PFT protein and a new mode of action by a secreted bacterial toxin.https://elifesciences.org/articles/73439Vibrio choleraeMakAlipid
spellingShingle Aftab Nadeem
Alexandra Berg
Hudson Pace
Athar Alam
Eric Toh
Jörgen Ådén
Nikola Zlatkov
Si Lhyam Myint
Karina Persson
Gerhard Gröbner
Anders Sjöstedt
Marta Bally
Jonas Barandun
Bernt Eric Uhlin
Sun Nyunt Wai
Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio cholerae
eLife
Vibrio cholerae
MakA
lipid
title Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio cholerae
title_full Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio cholerae
title_fullStr Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio cholerae
title_full_unstemmed Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio cholerae
title_short Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio cholerae
title_sort protein lipid interaction at low ph induces oligomerization of the maka cytotoxin from vibrio cholerae
topic Vibrio cholerae
MakA
lipid
url https://elifesciences.org/articles/73439
work_keys_str_mv AT aftabnadeem proteinlipidinteractionatlowphinducesoligomerizationofthemakacytotoxinfromvibriocholerae
AT alexandraberg proteinlipidinteractionatlowphinducesoligomerizationofthemakacytotoxinfromvibriocholerae
AT hudsonpace proteinlipidinteractionatlowphinducesoligomerizationofthemakacytotoxinfromvibriocholerae
AT atharalam proteinlipidinteractionatlowphinducesoligomerizationofthemakacytotoxinfromvibriocholerae
AT erictoh proteinlipidinteractionatlowphinducesoligomerizationofthemakacytotoxinfromvibriocholerae
AT jorgenaden proteinlipidinteractionatlowphinducesoligomerizationofthemakacytotoxinfromvibriocholerae
AT nikolazlatkov proteinlipidinteractionatlowphinducesoligomerizationofthemakacytotoxinfromvibriocholerae
AT silhyammyint proteinlipidinteractionatlowphinducesoligomerizationofthemakacytotoxinfromvibriocholerae
AT karinapersson proteinlipidinteractionatlowphinducesoligomerizationofthemakacytotoxinfromvibriocholerae
AT gerhardgrobner proteinlipidinteractionatlowphinducesoligomerizationofthemakacytotoxinfromvibriocholerae
AT anderssjostedt proteinlipidinteractionatlowphinducesoligomerizationofthemakacytotoxinfromvibriocholerae
AT martabally proteinlipidinteractionatlowphinducesoligomerizationofthemakacytotoxinfromvibriocholerae
AT jonasbarandun proteinlipidinteractionatlowphinducesoligomerizationofthemakacytotoxinfromvibriocholerae
AT berntericuhlin proteinlipidinteractionatlowphinducesoligomerizationofthemakacytotoxinfromvibriocholerae
AT sunnyuntwai proteinlipidinteractionatlowphinducesoligomerizationofthemakacytotoxinfromvibriocholerae