Sub-Threshold Fabrication of Laser-Induced Periodic Surface Structures on Diamond-like Nanocomposite Films with IR Femtosecond Pulses

In the paper, we study the formation of laser-induced periodic surface structures (LIPSS) on diamond-like nanocomposite (DLN) a-C:H:Si:O films during nanoscale ablation processing at low fluences—below the single-pulse graphitization and spallation thresholds—using an IR fs-laser (wavelength 1030 nm...

Full description

Bibliographic Details
Main Authors: Sergei M. Pimenov, Evgeny V. Zavedeev, Beat Jaeggi, Josef Zuercher, Beat Neuenschwander
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/13/4506
Description
Summary:In the paper, we study the formation of laser-induced periodic surface structures (LIPSS) on diamond-like nanocomposite (DLN) a-C:H:Si:O films during nanoscale ablation processing at low fluences—below the single-pulse graphitization and spallation thresholds—using an IR fs-laser (wavelength 1030 nm, pulse duration 320 fs, pulse repetition rate 100 kHz, scanning beam velocity 0.04–0.08 m/s). The studies are focused on microscopic analysis of the nanostructured DLN film surface at different stages of LIPSS formation and numerical modeling of surface plasmon polaritons in a thin graphitized surface layer. Important findings are concerned with (i) sub-threshold fabrication of high spatial frequency LIPSS (HSFL) and low spatial frequency LIPSS (LSFL) under negligible surface graphitization of hard DLN films, (ii) transition from the HSFL (periods of 140 ± 30 and 230 ± 40 nm) to LSFL (period of 830–900 nm) within a narrow fluence range of 0.21–0.32 J/cm<sup>2</sup>, (iii) visualization of equi-field lines by ablated nanoparticles at an initial stage of the LIPSS formation, providing proof of larger electric fields in the valleys and weaker fields at the ridges of a growing surface grating, (iv) influence of the thickness of a laser-excited glassy carbon (GC) layer on the period of surface plasmon polaritons excited in a three-layer system “air/GC layer/DLN film”.
ISSN:1996-1944