Light rays in static spacetimes with critical asymptotic behavior: A variational approach

Let $mathcal{M}=mathcal{M}_{0}imes mathbb{R}$ be a Lorentzian manifold equipped with the static metric $langle cdot ,cdot angle _{z}=langle cdot ,cdot angle -eta (x)dt^{2}$. The aim of this paper is investigating the existence of lightlike geodesics joining a point $z_{0}=(x_{0},t_{0})$ to a line $g...

Full description

Bibliographic Details
Main Author: Valeria Luisi
Format: Article
Language:English
Published: Texas State University 2006-09-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2006/114/abstr.html
_version_ 1818353959567360000
author Valeria Luisi
author_facet Valeria Luisi
author_sort Valeria Luisi
collection DOAJ
description Let $mathcal{M}=mathcal{M}_{0}imes mathbb{R}$ be a Lorentzian manifold equipped with the static metric $langle cdot ,cdot angle _{z}=langle cdot ,cdot angle -eta (x)dt^{2}$. The aim of this paper is investigating the existence of lightlike geodesics joining a point $z_{0}=(x_{0},t_{0})$ to a line $gamma ={ x_{1}} imes mathbb{R}$ when coefficient $eta $ has a quadratic asymptotic behavior by means of a variational approach.
first_indexed 2024-12-13T19:17:49Z
format Article
id doaj.art-0aa6c6413b5b41b79ad687a9d0de804c
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-13T19:17:49Z
publishDate 2006-09-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-0aa6c6413b5b41b79ad687a9d0de804c2022-12-21T23:34:15ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912006-09-01200611419Light rays in static spacetimes with critical asymptotic behavior: A variational approachValeria LuisiLet $mathcal{M}=mathcal{M}_{0}imes mathbb{R}$ be a Lorentzian manifold equipped with the static metric $langle cdot ,cdot angle _{z}=langle cdot ,cdot angle -eta (x)dt^{2}$. The aim of this paper is investigating the existence of lightlike geodesics joining a point $z_{0}=(x_{0},t_{0})$ to a line $gamma ={ x_{1}} imes mathbb{R}$ when coefficient $eta $ has a quadratic asymptotic behavior by means of a variational approach.http://ejde.math.txstate.edu/Volumes/2006/114/abstr.htmlStatic spacetimelight rayquadratic asymptotic behaviorFermat principleLjusternik-Schnirelman category.
spellingShingle Valeria Luisi
Light rays in static spacetimes with critical asymptotic behavior: A variational approach
Electronic Journal of Differential Equations
Static spacetime
light ray
quadratic asymptotic behavior
Fermat principle
Ljusternik-Schnirelman category.
title Light rays in static spacetimes with critical asymptotic behavior: A variational approach
title_full Light rays in static spacetimes with critical asymptotic behavior: A variational approach
title_fullStr Light rays in static spacetimes with critical asymptotic behavior: A variational approach
title_full_unstemmed Light rays in static spacetimes with critical asymptotic behavior: A variational approach
title_short Light rays in static spacetimes with critical asymptotic behavior: A variational approach
title_sort light rays in static spacetimes with critical asymptotic behavior a variational approach
topic Static spacetime
light ray
quadratic asymptotic behavior
Fermat principle
Ljusternik-Schnirelman category.
url http://ejde.math.txstate.edu/Volumes/2006/114/abstr.html
work_keys_str_mv AT valerialuisi lightraysinstaticspacetimeswithcriticalasymptoticbehavioravariationalapproach