Agricultural Pest Super-Resolution and Identification With Attention Enhanced Residual and Dense Fusion Generative and Adversarial Network

The growth of the most significant field crops such as rice, wheat, maize, and soybean are influenced because of various pests. And crop production is decreased due to various categories of insects. Deep learning technologies significantly increased the efficiency of identifying and controlling agri...

Full description

Bibliographic Details
Main Authors: Qiang Dai, Xi Cheng, Yan Qiao, Youhua Zhang
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9082695/
Description
Summary:The growth of the most significant field crops such as rice, wheat, maize, and soybean are influenced because of various pests. And crop production is decreased due to various categories of insects. Deep learning technologies significantly increased the efficiency of identifying and controlling agricultural pests attack. However, agricultural pests images obtained are often obscure and unclear because of the sparse density of cameras deployed in the real farmland. This always makes pests difficult to recognize and monitor. Additionally, the existing classification and segmentation methods are not satisfying for the identification of low-resolution images because they are pre-trained on the clear and high-resolution datasets. Therefore, it is crucial to restore and upscale the obtained low-resolution pest images in order to improve classification accuracy and the recall rate of the instance segmentation. In this paper, we propose a generative adversarial network (GAN) with quadra-attention and residual and dense fusion mechanisms to transform low-resolution pest images. Compared with previous state-of-the-art PSNR-oriented super-resolution methods, our proposed method is more powerful in image reconstruction and achieves the state of the art performance. The experiment results show that after reconstructing with our proposed gan, the recall rate increased by 182.89% and classification accuracy also improved a lot. Besides, our proposed method could decrease the density of the camera layout in the agricultural Internet of Things (IOT) monitor systems and the cost of infrastructure, which is practical for real-world applications.
ISSN:2169-3536