Selection of High Performance Alloy for Gas Turbine Blade Using Multiphysics Analysis
With the extensive increase in the utilization of energy resources in the modern era, the need of energy extraction from various resources has pronounced in recent years. Thus comprehensive efforts have been made around the globe in the technological development of turbo machines where means of ener...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MULTIPHYSICS
2016-09-01
|
Series: | International Journal of Multiphysics |
Online Access: | http://journal.multiphysics.org/index.php/IJM/article/view/251 |
_version_ | 1797707636013006848 |
---|---|
author | H Khawaja M Moatamedi |
author_facet | H Khawaja M Moatamedi |
author_sort | H Khawaja |
collection | DOAJ |
description | With the extensive increase in the utilization of energy resources in the modern era, the need of energy extraction from various resources has pronounced in recent years. Thus comprehensive efforts have been made around the globe in the technological development of turbo machines where means of energy extraction is energized fluids. This development led the aviation industry to power boost due to better performing engines. Meanwhile, the structural conformability requirements relative to the functional requirements have also increased with the advent of newer, better performing materials. Thus there is a need to study the material behavior and its usage with the idea of selecting the best possible material for its application.
In this work a gas turbine blade of a small turbofan engine, where geometry and aerodynamic data was available, was analyzed for its structural behavior in the proposed mission envelope, where the engine turbine is subjected to high thermal, inertial and aerodynamic loads. Multiphysics Finite Element (FE) linear stress analysis was carried out on the turbine blade. The results revealed the upper limit of Ultimate Tensile Strength (UTS) for the blade. Based on the limiting factor, high performance alloys were selected from the literature. The two most recommended alloy categories for gas turbine blades are NIMONIC and INCONEL from where total of 21 types of INCONEL alloys and 12 of NIMONIC alloys, available on commercial bases, were analyzed individually to meet the structural requirements. After applying selection criteria, four alloys were finalized from NIMONIC and INCONEL alloys for further analysis. On the basis of stress-strain behavior of finalized alloys, the Multiphysics FE nonlinear stress analysis was then carried out for the selection of the individual alloy by imposing a restriction of Ultimate Factor of Safety (UFOS) of 1.33 and yield strength. Final selection is made keeping in view other factors like manufacturability and workability in due consideration. |
first_indexed | 2024-03-12T06:10:17Z |
format | Article |
id | doaj.art-0ab71348a096450ca10ee0c98a189d3c |
institution | Directory Open Access Journal |
issn | 1750-9548 2048-3961 |
language | English |
last_indexed | 2024-03-12T06:10:17Z |
publishDate | 2016-09-01 |
publisher | MULTIPHYSICS |
record_format | Article |
series | International Journal of Multiphysics |
spelling | doaj.art-0ab71348a096450ca10ee0c98a189d3c2023-09-03T03:06:38ZengMULTIPHYSICSInternational Journal of Multiphysics1750-95482048-39612016-09-018110.1260/1750-9548.8.1.91263Selection of High Performance Alloy for Gas Turbine Blade Using Multiphysics AnalysisH Khawaja0M Moatamedi1Associate Professor, University of Tromsø, Tromsø, NorwayProfessor, Narvik University College, Narvik, NorwayWith the extensive increase in the utilization of energy resources in the modern era, the need of energy extraction from various resources has pronounced in recent years. Thus comprehensive efforts have been made around the globe in the technological development of turbo machines where means of energy extraction is energized fluids. This development led the aviation industry to power boost due to better performing engines. Meanwhile, the structural conformability requirements relative to the functional requirements have also increased with the advent of newer, better performing materials. Thus there is a need to study the material behavior and its usage with the idea of selecting the best possible material for its application. In this work a gas turbine blade of a small turbofan engine, where geometry and aerodynamic data was available, was analyzed for its structural behavior in the proposed mission envelope, where the engine turbine is subjected to high thermal, inertial and aerodynamic loads. Multiphysics Finite Element (FE) linear stress analysis was carried out on the turbine blade. The results revealed the upper limit of Ultimate Tensile Strength (UTS) for the blade. Based on the limiting factor, high performance alloys were selected from the literature. The two most recommended alloy categories for gas turbine blades are NIMONIC and INCONEL from where total of 21 types of INCONEL alloys and 12 of NIMONIC alloys, available on commercial bases, were analyzed individually to meet the structural requirements. After applying selection criteria, four alloys were finalized from NIMONIC and INCONEL alloys for further analysis. On the basis of stress-strain behavior of finalized alloys, the Multiphysics FE nonlinear stress analysis was then carried out for the selection of the individual alloy by imposing a restriction of Ultimate Factor of Safety (UFOS) of 1.33 and yield strength. Final selection is made keeping in view other factors like manufacturability and workability in due consideration.http://journal.multiphysics.org/index.php/IJM/article/view/251 |
spellingShingle | H Khawaja M Moatamedi Selection of High Performance Alloy for Gas Turbine Blade Using Multiphysics Analysis International Journal of Multiphysics |
title | Selection of High Performance Alloy for Gas Turbine Blade Using Multiphysics Analysis |
title_full | Selection of High Performance Alloy for Gas Turbine Blade Using Multiphysics Analysis |
title_fullStr | Selection of High Performance Alloy for Gas Turbine Blade Using Multiphysics Analysis |
title_full_unstemmed | Selection of High Performance Alloy for Gas Turbine Blade Using Multiphysics Analysis |
title_short | Selection of High Performance Alloy for Gas Turbine Blade Using Multiphysics Analysis |
title_sort | selection of high performance alloy for gas turbine blade using multiphysics analysis |
url | http://journal.multiphysics.org/index.php/IJM/article/view/251 |
work_keys_str_mv | AT hkhawaja selectionofhighperformancealloyforgasturbinebladeusingmultiphysicsanalysis AT mmoatamedi selectionofhighperformancealloyforgasturbinebladeusingmultiphysicsanalysis |