CO2 concentration as an indicator of indoor ventilation performance to control airborne transmission of SARS-CoV-2
Background: The Wells-Riley equation has been extensively used to quantify the infection risk of airborne transmission indoors. This equation is difficult to apply to actual conditions because it requires measurement of the outdoor air supply rate, which vary with time and are difficult to quantify....
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-07-01
|
Series: | Journal of Infection and Public Health |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S187603412300165X |
_version_ | 1797814386320998400 |
---|---|
author | Sowoo Park Doosam Song |
author_facet | Sowoo Park Doosam Song |
author_sort | Sowoo Park |
collection | DOAJ |
description | Background: The Wells-Riley equation has been extensively used to quantify the infection risk of airborne transmission indoors. This equation is difficult to apply to actual conditions because it requires measurement of the outdoor air supply rate, which vary with time and are difficult to quantify. The method of determining the fraction of inhaled air that has been exhaled previously by someone in a building using a CO2 concentration measurement can solve the limitations of the existing method. Using this method, the indoor CO2 concentration threshold can be determined to keep the risk of infection below certain conditions. Methods: Based on the calculation of the rebreathed fraction, an appropriate mean indoor CO2 concentration and required air exchange rate to control SARS-CoV-2 airborne transmission was calculated. The number of indoor occupants, ventilation rate, and the deposition and inactivation rates of the virus-laden aerosols were considered. The application of the proposed indoor CO2 concentration-based infection rate control was investigated through case studies in school classrooms and restaurants. Results: In a typical school classroom environment with 20–25 occupants and an exposure time of 6–8 h, the average indoor CO2 concentration should be kept below 700 ppm to control the risk of airborne infection indoors. The ASHRAE recommended ventilation rate is sufficient when wearing a mask in classrooms. For a typical restaurant with 50–100 occupants and an exposure time of 2–3 h, the average indoor CO2 concentration should be kept below about 900 ppm. Residence time in the restaurant had a significant effect on the acceptable CO2 concentration. Conclusion: Given the conditions of the occupancy environment, it is possible to determine an indoor CO2 concentration threshold, and keeping the CO2 concentration lower than a certain threshold could help reduce the risk of COVID-19 infection. |
first_indexed | 2024-03-13T08:06:56Z |
format | Article |
id | doaj.art-0aba5403e62b45538b269d092c4048f5 |
institution | Directory Open Access Journal |
issn | 1876-0341 |
language | English |
last_indexed | 2024-03-13T08:06:56Z |
publishDate | 2023-07-01 |
publisher | Elsevier |
record_format | Article |
series | Journal of Infection and Public Health |
spelling | doaj.art-0aba5403e62b45538b269d092c4048f52023-06-01T04:35:26ZengElsevierJournal of Infection and Public Health1876-03412023-07-0116710371044CO2 concentration as an indicator of indoor ventilation performance to control airborne transmission of SARS-CoV-2Sowoo Park0Doosam Song1Graduate School, Sungkyunkwan University, Suwon 16419, South KoreaSchool of Civil, Architectural Eng., and Landscape Architecture, Sungkyunkwan University, Suwon 16419, South Korea; Corresponding author.Background: The Wells-Riley equation has been extensively used to quantify the infection risk of airborne transmission indoors. This equation is difficult to apply to actual conditions because it requires measurement of the outdoor air supply rate, which vary with time and are difficult to quantify. The method of determining the fraction of inhaled air that has been exhaled previously by someone in a building using a CO2 concentration measurement can solve the limitations of the existing method. Using this method, the indoor CO2 concentration threshold can be determined to keep the risk of infection below certain conditions. Methods: Based on the calculation of the rebreathed fraction, an appropriate mean indoor CO2 concentration and required air exchange rate to control SARS-CoV-2 airborne transmission was calculated. The number of indoor occupants, ventilation rate, and the deposition and inactivation rates of the virus-laden aerosols were considered. The application of the proposed indoor CO2 concentration-based infection rate control was investigated through case studies in school classrooms and restaurants. Results: In a typical school classroom environment with 20–25 occupants and an exposure time of 6–8 h, the average indoor CO2 concentration should be kept below 700 ppm to control the risk of airborne infection indoors. The ASHRAE recommended ventilation rate is sufficient when wearing a mask in classrooms. For a typical restaurant with 50–100 occupants and an exposure time of 2–3 h, the average indoor CO2 concentration should be kept below about 900 ppm. Residence time in the restaurant had a significant effect on the acceptable CO2 concentration. Conclusion: Given the conditions of the occupancy environment, it is possible to determine an indoor CO2 concentration threshold, and keeping the CO2 concentration lower than a certain threshold could help reduce the risk of COVID-19 infection.http://www.sciencedirect.com/science/article/pii/S187603412300165XSARS-CoV-2Airborne transmissionProbability of infectionRebreathed fractionCO2 concentration |
spellingShingle | Sowoo Park Doosam Song CO2 concentration as an indicator of indoor ventilation performance to control airborne transmission of SARS-CoV-2 Journal of Infection and Public Health SARS-CoV-2 Airborne transmission Probability of infection Rebreathed fraction CO2 concentration |
title | CO2 concentration as an indicator of indoor ventilation performance to control airborne transmission of SARS-CoV-2 |
title_full | CO2 concentration as an indicator of indoor ventilation performance to control airborne transmission of SARS-CoV-2 |
title_fullStr | CO2 concentration as an indicator of indoor ventilation performance to control airborne transmission of SARS-CoV-2 |
title_full_unstemmed | CO2 concentration as an indicator of indoor ventilation performance to control airborne transmission of SARS-CoV-2 |
title_short | CO2 concentration as an indicator of indoor ventilation performance to control airborne transmission of SARS-CoV-2 |
title_sort | co2 concentration as an indicator of indoor ventilation performance to control airborne transmission of sars cov 2 |
topic | SARS-CoV-2 Airborne transmission Probability of infection Rebreathed fraction CO2 concentration |
url | http://www.sciencedirect.com/science/article/pii/S187603412300165X |
work_keys_str_mv | AT sowoopark co2concentrationasanindicatorofindoorventilationperformancetocontrolairbornetransmissionofsarscov2 AT doosamsong co2concentrationasanindicatorofindoorventilationperformancetocontrolairbornetransmissionofsarscov2 |