A machine learning tool for future prediction of heat release capacity of in-situ flame retardant hybrid Mg(OH)2-Epoxy nanocomposites

In this work, the fire behavior of a sol-gel in-situ hybrid Mg(OH)2-epoxy nanocomposite was investigated and an artificial neural network-based system built on a fully connected feed-forward artificial neural network was developed to predict its heat release capacity. The nanocomposite containing on...

Full description

Bibliographic Details
Main Authors: Aurelio Bifulco, Angelo Casciello, Claudio Imparato, Stanislao Forte, Sabyasachi Gaan, Antonio Aronne, Giulio Malucelli
Format: Article
Language:English
Published: Elsevier 2023-10-01
Series:Polymer Testing
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0142941823002556
_version_ 1797683179160600576
author Aurelio Bifulco
Angelo Casciello
Claudio Imparato
Stanislao Forte
Sabyasachi Gaan
Antonio Aronne
Giulio Malucelli
author_facet Aurelio Bifulco
Angelo Casciello
Claudio Imparato
Stanislao Forte
Sabyasachi Gaan
Antonio Aronne
Giulio Malucelli
author_sort Aurelio Bifulco
collection DOAJ
description In this work, the fire behavior of a sol-gel in-situ hybrid Mg(OH)2-epoxy nanocomposite was investigated and an artificial neural network-based system built on a fully connected feed-forward artificial neural network was developed to predict its heat release capacity. The nanocomposite containing only ∼5 wt% loading of Mg(OH)2 promoted a remarkable decrease in heat release capacity (∼34%) measured by pyrolysis combustion flow calorimetry and in peak of heat release rate (∼37%), and heat release rate (∼29%), as assessed by cone calorimetry, as well as a significant decrease of total smoke release and smoke extinction area about 22 and 5%, respectively, indicating the suitability of Mg(OH)2 as an effective smoke suppressant. The proposed machine learning approach may be used as a promising alternative for a cost- and time-saving prediction of the fire performances of novel flame retardant polymer-based nanocomposites.
first_indexed 2024-03-12T00:11:44Z
format Article
id doaj.art-0ac31323dd5a400a926152cadcd6c0e0
institution Directory Open Access Journal
issn 0142-9418
language English
last_indexed 2024-03-12T00:11:44Z
publishDate 2023-10-01
publisher Elsevier
record_format Article
series Polymer Testing
spelling doaj.art-0ac31323dd5a400a926152cadcd6c0e02023-09-16T05:28:06ZengElsevierPolymer Testing0142-94182023-10-01127108175A machine learning tool for future prediction of heat release capacity of in-situ flame retardant hybrid Mg(OH)2-Epoxy nanocompositesAurelio Bifulco0Angelo Casciello1Claudio Imparato2Stanislao Forte3Sabyasachi Gaan4Antonio Aronne5Giulio Malucelli6Department of Chemical Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, ItalyDepartment of Chemical Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, ItalyDepartment of Chemical Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, ItalySoftware Care Srl, Via Servio Tullio, 106, 80126, Naples, ItalyLaboratory for Advanced Fibers, Empa Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, SwitzerlandDepartment of Chemical Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, ItalyDepartment of Applied Science and Technology, Politecnico di Torino, Viale Teresa Michel 5, Alessandria, 15121, Italy; Corresponding author.In this work, the fire behavior of a sol-gel in-situ hybrid Mg(OH)2-epoxy nanocomposite was investigated and an artificial neural network-based system built on a fully connected feed-forward artificial neural network was developed to predict its heat release capacity. The nanocomposite containing only ∼5 wt% loading of Mg(OH)2 promoted a remarkable decrease in heat release capacity (∼34%) measured by pyrolysis combustion flow calorimetry and in peak of heat release rate (∼37%), and heat release rate (∼29%), as assessed by cone calorimetry, as well as a significant decrease of total smoke release and smoke extinction area about 22 and 5%, respectively, indicating the suitability of Mg(OH)2 as an effective smoke suppressant. The proposed machine learning approach may be used as a promising alternative for a cost- and time-saving prediction of the fire performances of novel flame retardant polymer-based nanocomposites.http://www.sciencedirect.com/science/article/pii/S0142941823002556Magnesium hydroxideSol-gelEpoxyPrediction of fire parametersArtificial neural networksMachine learning
spellingShingle Aurelio Bifulco
Angelo Casciello
Claudio Imparato
Stanislao Forte
Sabyasachi Gaan
Antonio Aronne
Giulio Malucelli
A machine learning tool for future prediction of heat release capacity of in-situ flame retardant hybrid Mg(OH)2-Epoxy nanocomposites
Polymer Testing
Magnesium hydroxide
Sol-gel
Epoxy
Prediction of fire parameters
Artificial neural networks
Machine learning
title A machine learning tool for future prediction of heat release capacity of in-situ flame retardant hybrid Mg(OH)2-Epoxy nanocomposites
title_full A machine learning tool for future prediction of heat release capacity of in-situ flame retardant hybrid Mg(OH)2-Epoxy nanocomposites
title_fullStr A machine learning tool for future prediction of heat release capacity of in-situ flame retardant hybrid Mg(OH)2-Epoxy nanocomposites
title_full_unstemmed A machine learning tool for future prediction of heat release capacity of in-situ flame retardant hybrid Mg(OH)2-Epoxy nanocomposites
title_short A machine learning tool for future prediction of heat release capacity of in-situ flame retardant hybrid Mg(OH)2-Epoxy nanocomposites
title_sort machine learning tool for future prediction of heat release capacity of in situ flame retardant hybrid mg oh 2 epoxy nanocomposites
topic Magnesium hydroxide
Sol-gel
Epoxy
Prediction of fire parameters
Artificial neural networks
Machine learning
url http://www.sciencedirect.com/science/article/pii/S0142941823002556
work_keys_str_mv AT aureliobifulco amachinelearningtoolforfuturepredictionofheatreleasecapacityofinsituflameretardanthybridmgoh2epoxynanocomposites
AT angelocasciello amachinelearningtoolforfuturepredictionofheatreleasecapacityofinsituflameretardanthybridmgoh2epoxynanocomposites
AT claudioimparato amachinelearningtoolforfuturepredictionofheatreleasecapacityofinsituflameretardanthybridmgoh2epoxynanocomposites
AT stanislaoforte amachinelearningtoolforfuturepredictionofheatreleasecapacityofinsituflameretardanthybridmgoh2epoxynanocomposites
AT sabyasachigaan amachinelearningtoolforfuturepredictionofheatreleasecapacityofinsituflameretardanthybridmgoh2epoxynanocomposites
AT antonioaronne amachinelearningtoolforfuturepredictionofheatreleasecapacityofinsituflameretardanthybridmgoh2epoxynanocomposites
AT giuliomalucelli amachinelearningtoolforfuturepredictionofheatreleasecapacityofinsituflameretardanthybridmgoh2epoxynanocomposites
AT aureliobifulco machinelearningtoolforfuturepredictionofheatreleasecapacityofinsituflameretardanthybridmgoh2epoxynanocomposites
AT angelocasciello machinelearningtoolforfuturepredictionofheatreleasecapacityofinsituflameretardanthybridmgoh2epoxynanocomposites
AT claudioimparato machinelearningtoolforfuturepredictionofheatreleasecapacityofinsituflameretardanthybridmgoh2epoxynanocomposites
AT stanislaoforte machinelearningtoolforfuturepredictionofheatreleasecapacityofinsituflameretardanthybridmgoh2epoxynanocomposites
AT sabyasachigaan machinelearningtoolforfuturepredictionofheatreleasecapacityofinsituflameretardanthybridmgoh2epoxynanocomposites
AT antonioaronne machinelearningtoolforfuturepredictionofheatreleasecapacityofinsituflameretardanthybridmgoh2epoxynanocomposites
AT giuliomalucelli machinelearningtoolforfuturepredictionofheatreleasecapacityofinsituflameretardanthybridmgoh2epoxynanocomposites