Identification of Landslides in Mountainous Area with the Combination of SBAS-InSAR and Yolo Model

Landslides have been frequently occurring in the high mountainous areas in China and poses serious threats to peoples’ lives and property, economic development, and national security. Detecting and monitoring quiescent or active landslides is important for predicting risks and mitigating losses. How...

Full description

Bibliographic Details
Main Authors: Haojia Guo, Bangjin Yi, Qianxiang Yao, Peng Gao, Hui Li, Jixing Sun, Cheng Zhong
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/16/6235
Description
Summary:Landslides have been frequently occurring in the high mountainous areas in China and poses serious threats to peoples’ lives and property, economic development, and national security. Detecting and monitoring quiescent or active landslides is important for predicting risks and mitigating losses. However, traditional ground survey methods, such as field investigation, GNSS, and total stations, are only suitable for field investigation at a specific site rather than identifying landslides over a large area, as they are expensive, time-consuming, and laborious. In this study, the feasibility of using SBAS-InSAR to detect landslides in the high mountainous areas along the Yunnan Myanmar border was tested first, with fifty-four IW mode Sentinel-1A ascending scenes from 12 January 2019 to 8 December 2020. Next, the Yolo deep-learning model with Gaofen-2 images captured on 5 December 2020 was tested. Finally, the two techniques were combined to achieve better performance, given each of them has intrinsic limitations on landslide detection. The experiment indicated that the combination could improve the match rate between detection results and references, which implied that the performance of landslide detection can be improved with the fusion of time series SAR images and optical images.
ISSN:1424-8220