On the Minimal General Sum-Connectivity Index of Connected Graphs Without Pendant Vertices

The general sum-connectivity index of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>, denoted by <inline-formula> <tex-math notation="LaTeX">$\chi _{_\alpha }(G)$ </tex-math></inline-formula>, i...

Full description

Bibliographic Details
Main Authors: Akbar Ali, Shahzad Ahmed, Zhibin Du, Wei Gao, Muhammad Aslam Malik
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8823929/
_version_ 1811212269908918272
author Akbar Ali
Shahzad Ahmed
Zhibin Du
Wei Gao
Muhammad Aslam Malik
author_facet Akbar Ali
Shahzad Ahmed
Zhibin Du
Wei Gao
Muhammad Aslam Malik
author_sort Akbar Ali
collection DOAJ
description The general sum-connectivity index of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>, denoted by <inline-formula> <tex-math notation="LaTeX">$\chi _{_\alpha }(G)$ </tex-math></inline-formula>, is defined as <inline-formula> <tex-math notation="LaTeX">$\sum _{uv\in E(G)}(d(u)+d(v))^{\alpha }$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$uv$ </tex-math></inline-formula> is the edge connecting the vertices <inline-formula> <tex-math notation="LaTeX">$u,v\in V(G)$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$d(w)$ </tex-math></inline-formula> denotes the degree of a vertex <inline-formula> <tex-math notation="LaTeX">$w\in V(G)$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula> is a non-zero real number. For <inline-formula> <tex-math notation="LaTeX">$\alpha =-1/2$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$n\geq 11$ </tex-math></inline-formula>, Wang <italic>et al.</italic> [On the sum-connectivity index, Filomat 25 (2011) 29&#x2013;42] proved that <inline-formula> <tex-math notation="LaTeX">$K_{2} + \overline {K}_{n-2}$ </tex-math></inline-formula> is the unique graph with minimum <inline-formula> <tex-math notation="LaTeX">$\chi _{_\alpha }$ </tex-math></inline-formula> value among all the <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>&#x2013;vertex graphs having minimum degree at least 2, where <inline-formula> <tex-math notation="LaTeX">$K_{2} + \overline {K}_{n-2}$ </tex-math></inline-formula> is the join of the 2-vertex complete graph <inline-formula> <tex-math notation="LaTeX">$K_{2}$ </tex-math></inline-formula> and the edgeless graph <inline-formula> <tex-math notation="LaTeX">$\overline {K}_{n-2}$ </tex-math></inline-formula> on <inline-formula> <tex-math notation="LaTeX">$n-2$ </tex-math></inline-formula> vertices. Tomescu [2-connected graphs with minimum general sum-connectivity index, Discrete Appl. Math. 178 (2014) 135&#x2013;141] proved that the result of Wang <italic>et al.</italic> holds also for <inline-formula> <tex-math notation="LaTeX">$n\geq 3$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$-1\leq \alpha &lt; -0.867$ </tex-math></inline-formula>. In this paper, it is shown that the aforementioned result of Wang <italic>et al.</italic> remains valid if the graphs under consideration are connected, <inline-formula> <tex-math notation="LaTeX">$n\geq 6$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$-1\leq \alpha &lt; \alpha _{0}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$\alpha _{0}\approx -0.68119$ </tex-math></inline-formula> is the unique real root of the equation <inline-formula> <tex-math notation="LaTeX">$\chi _{_\alpha }(K_{2} + \overline {K}_{4}) - \chi _{_\alpha }(C_{6})=0$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$C_{6}$ </tex-math></inline-formula> is the cycle on 6 vertices.
first_indexed 2024-04-12T05:26:23Z
format Article
id doaj.art-0ad05ccbdd914853b7c53339a20b41f9
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-04-12T05:26:23Z
publishDate 2019-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-0ad05ccbdd914853b7c53339a20b41f92022-12-22T03:46:15ZengIEEEIEEE Access2169-35362019-01-01713674313675110.1109/ACCESS.2019.29395108823929On the Minimal General Sum-Connectivity Index of Connected Graphs Without Pendant VerticesAkbar Ali0https://orcid.org/0000-0001-8160-4196Shahzad Ahmed1Zhibin Du2https://orcid.org/0000-0001-5795-3580Wei Gao3https://orcid.org/0000-0001-7963-3502Muhammad Aslam Malik4Knowledge Unit of Science, University of Management and Technology, Sialkot, PakistanKnowledge Unit of Science, University of Management and Technology, Sialkot, PakistanSchool of Mathematics and Statistics, Zhaoqing University, Zhaoqing, ChinaSchool of Information Science and Technology, Yunnan Normal University, Kunming, ChinaDepartment of Mathematics, University of the Punjab, Quaid-i-Azam Campus, Lahore, PakistanThe general sum-connectivity index of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>, denoted by <inline-formula> <tex-math notation="LaTeX">$\chi _{_\alpha }(G)$ </tex-math></inline-formula>, is defined as <inline-formula> <tex-math notation="LaTeX">$\sum _{uv\in E(G)}(d(u)+d(v))^{\alpha }$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$uv$ </tex-math></inline-formula> is the edge connecting the vertices <inline-formula> <tex-math notation="LaTeX">$u,v\in V(G)$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$d(w)$ </tex-math></inline-formula> denotes the degree of a vertex <inline-formula> <tex-math notation="LaTeX">$w\in V(G)$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula> is a non-zero real number. For <inline-formula> <tex-math notation="LaTeX">$\alpha =-1/2$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$n\geq 11$ </tex-math></inline-formula>, Wang <italic>et al.</italic> [On the sum-connectivity index, Filomat 25 (2011) 29&#x2013;42] proved that <inline-formula> <tex-math notation="LaTeX">$K_{2} + \overline {K}_{n-2}$ </tex-math></inline-formula> is the unique graph with minimum <inline-formula> <tex-math notation="LaTeX">$\chi _{_\alpha }$ </tex-math></inline-formula> value among all the <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>&#x2013;vertex graphs having minimum degree at least 2, where <inline-formula> <tex-math notation="LaTeX">$K_{2} + \overline {K}_{n-2}$ </tex-math></inline-formula> is the join of the 2-vertex complete graph <inline-formula> <tex-math notation="LaTeX">$K_{2}$ </tex-math></inline-formula> and the edgeless graph <inline-formula> <tex-math notation="LaTeX">$\overline {K}_{n-2}$ </tex-math></inline-formula> on <inline-formula> <tex-math notation="LaTeX">$n-2$ </tex-math></inline-formula> vertices. Tomescu [2-connected graphs with minimum general sum-connectivity index, Discrete Appl. Math. 178 (2014) 135&#x2013;141] proved that the result of Wang <italic>et al.</italic> holds also for <inline-formula> <tex-math notation="LaTeX">$n\geq 3$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$-1\leq \alpha &lt; -0.867$ </tex-math></inline-formula>. In this paper, it is shown that the aforementioned result of Wang <italic>et al.</italic> remains valid if the graphs under consideration are connected, <inline-formula> <tex-math notation="LaTeX">$n\geq 6$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$-1\leq \alpha &lt; \alpha _{0}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$\alpha _{0}\approx -0.68119$ </tex-math></inline-formula> is the unique real root of the equation <inline-formula> <tex-math notation="LaTeX">$\chi _{_\alpha }(K_{2} + \overline {K}_{4}) - \chi _{_\alpha }(C_{6})=0$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$C_{6}$ </tex-math></inline-formula> is the cycle on 6 vertices.https://ieeexplore.ieee.org/document/8823929/Chemical graph theorygeneral sum-connectivity indextopological index
spellingShingle Akbar Ali
Shahzad Ahmed
Zhibin Du
Wei Gao
Muhammad Aslam Malik
On the Minimal General Sum-Connectivity Index of Connected Graphs Without Pendant Vertices
IEEE Access
Chemical graph theory
general sum-connectivity index
topological index
title On the Minimal General Sum-Connectivity Index of Connected Graphs Without Pendant Vertices
title_full On the Minimal General Sum-Connectivity Index of Connected Graphs Without Pendant Vertices
title_fullStr On the Minimal General Sum-Connectivity Index of Connected Graphs Without Pendant Vertices
title_full_unstemmed On the Minimal General Sum-Connectivity Index of Connected Graphs Without Pendant Vertices
title_short On the Minimal General Sum-Connectivity Index of Connected Graphs Without Pendant Vertices
title_sort on the minimal general sum connectivity index of connected graphs without pendant vertices
topic Chemical graph theory
general sum-connectivity index
topological index
url https://ieeexplore.ieee.org/document/8823929/
work_keys_str_mv AT akbarali ontheminimalgeneralsumconnectivityindexofconnectedgraphswithoutpendantvertices
AT shahzadahmed ontheminimalgeneralsumconnectivityindexofconnectedgraphswithoutpendantvertices
AT zhibindu ontheminimalgeneralsumconnectivityindexofconnectedgraphswithoutpendantvertices
AT weigao ontheminimalgeneralsumconnectivityindexofconnectedgraphswithoutpendantvertices
AT muhammadaslammalik ontheminimalgeneralsumconnectivityindexofconnectedgraphswithoutpendantvertices