An Efficient Dissipation-Preserving Numerical Scheme to Solve a Caputo–Riesz Time-Space-Fractional Nonlinear Wave Equation

For the first time, a new dissipation-preserving scheme is proposed and analyzed to solve a Caputo–Riesz time-space-fractional multidimensional nonlinear wave equation with generalized potential. We consider initial conditions and impose homogeneous Dirichlet data on the boundary of a bounded hyper...

Full description

Bibliographic Details
Main Authors: Jorge E. Macías-Díaz, Tassos Bountis
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/9/500
Description
Summary:For the first time, a new dissipation-preserving scheme is proposed and analyzed to solve a Caputo–Riesz time-space-fractional multidimensional nonlinear wave equation with generalized potential. We consider initial conditions and impose homogeneous Dirichlet data on the boundary of a bounded hyper cube. We introduce an energy-type functional and prove that the new mathematical model obeys a conservation law. Motivated by these facts, we propose a finite-difference scheme to approximate the solutions of the continuous model. A discrete form of the continuous energy is proposed and the discrete operator is shown to satisfy a conservation law, in agreement with its continuous counterpart. We employ a fixed-point theorem to establish theoretically the existence of solutions and study analytically the numerical properties of consistency, stability and convergence. We carry out a number of numerical simulations to verify the validity of our theoretical results.
ISSN:2504-3110