Existence and non-existence of solutions for a p(x)-biharmonic problem

In this article, we study the following problem with Navier boundary conditions $$\displaylines{ \Delta (|\Delta u|^{p(x)-2}\Delta u)+|u|^{p(x)-2}u =\lambda |u|^{q(x)-2}u +\mu|u|^{\gamma(x)-2}u\quad \text{in } \Omega,\cr u=\Delta u=0 \quad \text{on } \partial\Omega. }$$ where $\Omega$ is a b...

Full description

Bibliographic Details
Main Authors: Ghasem A. Afrouzi, Maryam Mirzapour, Nguyen Thanh Chung
Format: Article
Language:English
Published: Texas State University 2015-06-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2015/158/abstr.html
_version_ 1818766533755666432
author Ghasem A. Afrouzi
Maryam Mirzapour
Nguyen Thanh Chung
author_facet Ghasem A. Afrouzi
Maryam Mirzapour
Nguyen Thanh Chung
author_sort Ghasem A. Afrouzi
collection DOAJ
description In this article, we study the following problem with Navier boundary conditions $$\displaylines{ \Delta (|\Delta u|^{p(x)-2}\Delta u)+|u|^{p(x)-2}u =\lambda |u|^{q(x)-2}u +\mu|u|^{\gamma(x)-2}u\quad \text{in } \Omega,\cr u=\Delta u=0 \quad \text{on } \partial\Omega. }$$ where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$ with smooth boundary $\partial \Omega$, $N\geq1$. $p(x),q(x)$ and $\gamma(x)$ are continuous functions on $\overline{\Omega}$, $\lambda$ and $\mu$ are parameters. Using variational methods, we establish some existence and non-existence results of solutions for this problem.
first_indexed 2024-12-18T08:35:30Z
format Article
id doaj.art-0ae1cb6e1f374abe97455fb1f05cf0d9
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-18T08:35:30Z
publishDate 2015-06-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-0ae1cb6e1f374abe97455fb1f05cf0d92022-12-21T21:14:20ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912015-06-012015158,18Existence and non-existence of solutions for a p(x)-biharmonic problemGhasem A. Afrouzi0Maryam Mirzapour1Nguyen Thanh Chung2 Univ. of Mazandaran, Babolsar, Iran Univ. of Mazandaran, Babolsar, Iran Quang Binh Univ., Dong Hoi, Vietnam In this article, we study the following problem with Navier boundary conditions $$\displaylines{ \Delta (|\Delta u|^{p(x)-2}\Delta u)+|u|^{p(x)-2}u =\lambda |u|^{q(x)-2}u +\mu|u|^{\gamma(x)-2}u\quad \text{in } \Omega,\cr u=\Delta u=0 \quad \text{on } \partial\Omega. }$$ where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$ with smooth boundary $\partial \Omega$, $N\geq1$. $p(x),q(x)$ and $\gamma(x)$ are continuous functions on $\overline{\Omega}$, $\lambda$ and $\mu$ are parameters. Using variational methods, we establish some existence and non-existence results of solutions for this problem.http://ejde.math.txstate.edu/Volumes/2015/158/abstr.htmlp(x)-Biharmonicvariable exponentcritical pointsminimum principlefountain theoremdual fountain theorem
spellingShingle Ghasem A. Afrouzi
Maryam Mirzapour
Nguyen Thanh Chung
Existence and non-existence of solutions for a p(x)-biharmonic problem
Electronic Journal of Differential Equations
p(x)-Biharmonic
variable exponent
critical points
minimum principle
fountain theorem
dual fountain theorem
title Existence and non-existence of solutions for a p(x)-biharmonic problem
title_full Existence and non-existence of solutions for a p(x)-biharmonic problem
title_fullStr Existence and non-existence of solutions for a p(x)-biharmonic problem
title_full_unstemmed Existence and non-existence of solutions for a p(x)-biharmonic problem
title_short Existence and non-existence of solutions for a p(x)-biharmonic problem
title_sort existence and non existence of solutions for a p x biharmonic problem
topic p(x)-Biharmonic
variable exponent
critical points
minimum principle
fountain theorem
dual fountain theorem
url http://ejde.math.txstate.edu/Volumes/2015/158/abstr.html
work_keys_str_mv AT ghasemaafrouzi existenceandnonexistenceofsolutionsforapxbiharmonicproblem
AT maryammirzapour existenceandnonexistenceofsolutionsforapxbiharmonicproblem
AT nguyenthanhchung existenceandnonexistenceofsolutionsforapxbiharmonicproblem