A multi-attribute approach to evaluating the impact of biostimulants on crop performance
An ever-growing collection of commercial biostimulants is becoming available in a wide variety of forms and compositions to improve crop performance. Given the intricate nature of deciphering the underlying mechanisms of commercial products, which typically comprise various biological components, it...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-08-01
|
Series: | Frontiers in Plant Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fpls.2023.1214112/full |
_version_ | 1797745308212396032 |
---|---|
author | Rodrigo Mendes Inácio de Barros Paulo Antônio D’Andréa Maria Stefânia Cruanhes D’Andréa-Kühl Geraldo Stachetti Rodrigues |
author_facet | Rodrigo Mendes Inácio de Barros Paulo Antônio D’Andréa Maria Stefânia Cruanhes D’Andréa-Kühl Geraldo Stachetti Rodrigues |
author_sort | Rodrigo Mendes |
collection | DOAJ |
description | An ever-growing collection of commercial biostimulants is becoming available in a wide variety of forms and compositions to improve crop performance. Given the intricate nature of deciphering the underlying mechanisms of commercial products, which typically comprise various biological components, it is crucial for research in this area to have robust tools to demonstrate their effectiveness in field trials. Here, we took a multi-attribute approach to evaluating the impact of biostimulants on crop performance. First, we assessed the impact of a biostimulant on the soil and rhizosphere microbiomes associated to crops in eight reference farms, including corn (3 farms), soybean (2), cotton (2) and sugarcane (1), in different biomes and production contexts in Brazil and Paraguay. Second, we modeled a set of integrated indicators to measure crop responses to biostimulant application, including five analytical themes as follows: i) crop development and production (9 indicators), ii) soil chemistry (9), iii) soil physics (5), iv) soil biology (6) and v) plant health (10). Amplicon 16S rRNA and ITS sequencing revealed that the use of the biostimulant consistently changes the structure of bacterial and fungal communities associated with the production system for all evaluated crops. In the rhizosphere samples, the most responsive bacterial taxa to biostimulant application were Prevotella in cotton; Prauserella and Methylovirgula in corn; and Methylocapsa in sugar cane. The most responsive fungal taxa to biostimulant use were Arachnomyces in soybean and cotton; and Rhizophlyctis in corn. The proposed integrated indicators yielded highly favorable positive impact indices (averaging at 0.80), indicating that biostimulant-treated fields correlate with better plant development and crop performance. Prominent indices were observed for indicators in four themes: soil biology (average index 0.84), crop production (0.81), soil physics (compaction reduction 0.81), and chemical fertility (0.75). The multi-attribute approach employed in this study offers an effective strategy for assessing the efficacy of biostimulant products across a wide range of crops and production systems. |
first_indexed | 2024-03-12T15:22:26Z |
format | Article |
id | doaj.art-0ae625214d32447b9d394743d6473ec4 |
institution | Directory Open Access Journal |
issn | 1664-462X |
language | English |
last_indexed | 2024-03-12T15:22:26Z |
publishDate | 2023-08-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Plant Science |
spelling | doaj.art-0ae625214d32447b9d394743d6473ec42023-08-11T01:06:38ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2023-08-011410.3389/fpls.2023.12141121214112A multi-attribute approach to evaluating the impact of biostimulants on crop performanceRodrigo Mendes0Inácio de Barros1Paulo Antônio D’Andréa2Maria Stefânia Cruanhes D’Andréa-Kühl3Geraldo Stachetti Rodrigues4Embrapa Meio Ambiente, Jaguariúna, SP, BrazilEmbrapa Gado de Leite, Juiz de Fora, MG, BrazilMicrogeo Biotecnologia Agrícola, Limeira, SP, BrazilMicrogeo Biotecnologia Agrícola, Limeira, SP, BrazilEmbrapa Meio Ambiente, Jaguariúna, SP, BrazilAn ever-growing collection of commercial biostimulants is becoming available in a wide variety of forms and compositions to improve crop performance. Given the intricate nature of deciphering the underlying mechanisms of commercial products, which typically comprise various biological components, it is crucial for research in this area to have robust tools to demonstrate their effectiveness in field trials. Here, we took a multi-attribute approach to evaluating the impact of biostimulants on crop performance. First, we assessed the impact of a biostimulant on the soil and rhizosphere microbiomes associated to crops in eight reference farms, including corn (3 farms), soybean (2), cotton (2) and sugarcane (1), in different biomes and production contexts in Brazil and Paraguay. Second, we modeled a set of integrated indicators to measure crop responses to biostimulant application, including five analytical themes as follows: i) crop development and production (9 indicators), ii) soil chemistry (9), iii) soil physics (5), iv) soil biology (6) and v) plant health (10). Amplicon 16S rRNA and ITS sequencing revealed that the use of the biostimulant consistently changes the structure of bacterial and fungal communities associated with the production system for all evaluated crops. In the rhizosphere samples, the most responsive bacterial taxa to biostimulant application were Prevotella in cotton; Prauserella and Methylovirgula in corn; and Methylocapsa in sugar cane. The most responsive fungal taxa to biostimulant use were Arachnomyces in soybean and cotton; and Rhizophlyctis in corn. The proposed integrated indicators yielded highly favorable positive impact indices (averaging at 0.80), indicating that biostimulant-treated fields correlate with better plant development and crop performance. Prominent indices were observed for indicators in four themes: soil biology (average index 0.84), crop production (0.81), soil physics (compaction reduction 0.81), and chemical fertility (0.75). The multi-attribute approach employed in this study offers an effective strategy for assessing the efficacy of biostimulant products across a wide range of crops and production systems.https://www.frontiersin.org/articles/10.3389/fpls.2023.1214112/fullimpact assessmentmulti-attribute indicatorsrhizosphere microbiomesoil microbiomesustainable agriculture |
spellingShingle | Rodrigo Mendes Inácio de Barros Paulo Antônio D’Andréa Maria Stefânia Cruanhes D’Andréa-Kühl Geraldo Stachetti Rodrigues A multi-attribute approach to evaluating the impact of biostimulants on crop performance Frontiers in Plant Science impact assessment multi-attribute indicators rhizosphere microbiome soil microbiome sustainable agriculture |
title | A multi-attribute approach to evaluating the impact of biostimulants on crop performance |
title_full | A multi-attribute approach to evaluating the impact of biostimulants on crop performance |
title_fullStr | A multi-attribute approach to evaluating the impact of biostimulants on crop performance |
title_full_unstemmed | A multi-attribute approach to evaluating the impact of biostimulants on crop performance |
title_short | A multi-attribute approach to evaluating the impact of biostimulants on crop performance |
title_sort | multi attribute approach to evaluating the impact of biostimulants on crop performance |
topic | impact assessment multi-attribute indicators rhizosphere microbiome soil microbiome sustainable agriculture |
url | https://www.frontiersin.org/articles/10.3389/fpls.2023.1214112/full |
work_keys_str_mv | AT rodrigomendes amultiattributeapproachtoevaluatingtheimpactofbiostimulantsoncropperformance AT inaciodebarros amultiattributeapproachtoevaluatingtheimpactofbiostimulantsoncropperformance AT pauloantoniodandrea amultiattributeapproachtoevaluatingtheimpactofbiostimulantsoncropperformance AT mariastefaniacruanhesdandreakuhl amultiattributeapproachtoevaluatingtheimpactofbiostimulantsoncropperformance AT geraldostachettirodrigues amultiattributeapproachtoevaluatingtheimpactofbiostimulantsoncropperformance AT rodrigomendes multiattributeapproachtoevaluatingtheimpactofbiostimulantsoncropperformance AT inaciodebarros multiattributeapproachtoevaluatingtheimpactofbiostimulantsoncropperformance AT pauloantoniodandrea multiattributeapproachtoevaluatingtheimpactofbiostimulantsoncropperformance AT mariastefaniacruanhesdandreakuhl multiattributeapproachtoevaluatingtheimpactofbiostimulantsoncropperformance AT geraldostachettirodrigues multiattributeapproachtoevaluatingtheimpactofbiostimulantsoncropperformance |