Wealth Rheology

We study wealth rank correlations in a simple model of macroeconomy. To quantify rank correlations between wealth rankings at different times, we use Kendall’s <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>...

Full description

Bibliographic Details
Main Authors: Zdzislaw Burda, Malgorzata J. Krawczyk, Krzysztof Malarz, Malgorzata Snarska
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/7/842
_version_ 1797528172782157824
author Zdzislaw Burda
Malgorzata J. Krawczyk
Krzysztof Malarz
Malgorzata Snarska
author_facet Zdzislaw Burda
Malgorzata J. Krawczyk
Krzysztof Malarz
Malgorzata Snarska
author_sort Zdzislaw Burda
collection DOAJ
description We study wealth rank correlations in a simple model of macroeconomy. To quantify rank correlations between wealth rankings at different times, we use Kendall’s <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> and Spearman’s <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>, Goodman–Kruskal’s <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>, and the lists’ overlap ratio. We show that the dynamics of wealth flow and the speed of reshuffling in the ranking list depend on parameters of the model controlling the wealth exchange rate and the wealth growth volatility. As an example of the rheology of wealth in real data, we analyze the lists of the richest people in Poland, Germany, the USA and the world.
first_indexed 2024-03-10T09:55:22Z
format Article
id doaj.art-0ae925364137410f8f2fe2cb660d5cb7
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T09:55:22Z
publishDate 2021-06-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-0ae925364137410f8f2fe2cb660d5cb72023-11-22T02:23:44ZengMDPI AGEntropy1099-43002021-06-0123784210.3390/e23070842Wealth RheologyZdzislaw Burda0Malgorzata J. Krawczyk1Krzysztof Malarz2Malgorzata Snarska3Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, PL-30059 Kraków, PolandFaculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, PL-30059 Kraków, PolandFaculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, PL-30059 Kraków, PolandDepartment of Financial Markets, Cracow University of Economics, Rakowicka 27, PL-31510 Kraków, PolandWe study wealth rank correlations in a simple model of macroeconomy. To quantify rank correlations between wealth rankings at different times, we use Kendall’s <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> and Spearman’s <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>, Goodman–Kruskal’s <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>, and the lists’ overlap ratio. We show that the dynamics of wealth flow and the speed of reshuffling in the ranking list depend on parameters of the model controlling the wealth exchange rate and the wealth growth volatility. As an example of the rheology of wealth in real data, we analyze the lists of the richest people in Poland, Germany, the USA and the world.https://www.mdpi.com/1099-4300/23/7/842Bouchaud–Mézard modelrank correlationsGini coefficientwealth distributionwealth inequality
spellingShingle Zdzislaw Burda
Malgorzata J. Krawczyk
Krzysztof Malarz
Malgorzata Snarska
Wealth Rheology
Entropy
Bouchaud–Mézard model
rank correlations
Gini coefficient
wealth distribution
wealth inequality
title Wealth Rheology
title_full Wealth Rheology
title_fullStr Wealth Rheology
title_full_unstemmed Wealth Rheology
title_short Wealth Rheology
title_sort wealth rheology
topic Bouchaud–Mézard model
rank correlations
Gini coefficient
wealth distribution
wealth inequality
url https://www.mdpi.com/1099-4300/23/7/842
work_keys_str_mv AT zdzislawburda wealthrheology
AT malgorzatajkrawczyk wealthrheology
AT krzysztofmalarz wealthrheology
AT malgorzatasnarska wealthrheology